doi:10.21311/002.31.9.03

A Management Performance Evaluation Model of Science & Technology Enterprise Incubator Based on Extension Membership Degree

Xiaoli Shi

Xi'an International University, Yudou Road 18, Yanta District, Xi'an 710077, China

Abstract

Management of science & technology enterprise incubator is complicated with much uncertainty. Its performance is hard to be measured accurately. Therefore, this paper analyzes key factors that influence the management performance evaluation of incubators and constructs a management performance evaluation system. It proposes an improved extension membership degree evaluation model of science & technology enterprise incubator based on extension theory. This model puts in place extension distance and extension side-distance of management performance evaluation indicator and works out corresponding extension correlation function and weighted extension membership degree. Through a case study, the model and the algorithm are proved to be effective and feasible.

Keywords:Science & Technology Enterprise; Management Performance; Extension Membership Degree; Evaluation Model.

1. INTRODUCTION

With the development of science and technology, hi-tech science & technology enterprise incubators grow at a staggering pace. These incubators are not only able to provide enterprises with qualified services of business counseling, business prediction and suggestions on financing, but also help them with technical analysis, business policy advice and entrepreneurial technical route planning. As a result, the emerging technological start-ups have a higher possibility of survival and success and effectively reduce the risk of failure.

However, many factors need to be taken into consideration to realize the purpose of enterprise incubators, both internal factors such as operation and external factors. The management of incubator is a complicated and fuzzy decision-making process. It is significant to effectively evaluate the management performance of incubator and make improvements to enable a sustainable development of science & technology enterprise incubator.

Many researchers have studied the performance evaluation of incubator with some achievements (Zhang and Zhan, 2010; Liu, 2011; Sun and Zhang, 2005; Xu et al., 2006). But these researches are more or less focused on specific objectives with certain limitations. Thus, based on previous progress, this paper proposes an improved management performance evaluation model from the perspective of extension membership degree (Cai and Yang, 2013; Yang and Cai, 2012; Wang et al., 2013; Wang et al., 2014; Lei and Qiu, 2013; Li et al., 2013).

2. MANAGEMENT PERFORMANCE EVALUATION SYSTEM OF SCIENCE & TECHNOLOGY ENTERPRISE INCUBATOR

Two aspects hold key to the effective evaluation of management performance. One is to put in place an effective indicator system. The other is to conduct quantitative measurement based on evaluation model or algorithm with high reliability. Therefore, the selection of indicators should be scientific, objective, guidable comprehensive and significant.

The principle of "being scientific" means that indicators selected should have significance and the selection process should be reasonable. The principle of "being objective" suggests that indicators are selected according to objective facts rather than subjective arbitrary. The principle of "being guidable" means indicators selected should provide guidance for the sustainable development of enterprise incubators. The principle of "being comprehensive" means to avoid bias and one-sidedness in indicator selection. The principle of "being significant" instructs to select key indicators rather than irrelevant ones. Based on these principles, this paper works out a new type of management performance evaluation indicator system to serve the analysis effectively, as is shown in Table 1.

Table 1 Management performance evaluation indicator system of science & technology enterprise incubator

Target layer	Criterion layer	Indicator layer		
	Incubating development ability	Percentage of success of incubating enterprises		
		Number of incubating enterprises		
		Incubating profit		
		Percentage of survival of incubating enterprises		
	Technological innovation ability	Scientific achievement		
Management performance		Technical transformationability		
		Training and learning ability		
		Number of cooperation projects of education		
evaluation index		combined with research and products		
system of science &	Economic performance	Cost of incubating		
technology		Resource utilization rate of incubating		
enterprise		Growth rate of income of the incubating		
incubator		enterprise		
measaesi	Social-profit performance	Employment growth rate		
		Industrial value-added rate of incubating		
		enterprises		
		Lifting force of soft environment of incubating		
		enterprises		
		Lifting force of hard environment of incubating		
		enterprises		

3. MANAGEMENT PERFORMANCE EVALUATION MODEL BASED ON EXTENSION MEMBERSHIP DEGREE

3.1. Indicators of management performance evaluation

From Table 1, it is clear that there are three types of evaluation indicators, namely, normal indicator, backward indicator and moderate indicator. Some indicators can describe the value accurately, while other needs fuzzy qualitative descriptions. There is a necessity to transform the backward and moderate indicators to normal indicators and qualitative ones to quantitative ones so as to effectively analyze the evaluation process.

For fuzzy qualitative description indicators, this paper uses the scale of 1-9 to do the quantitative description. 1 refers to that the indicator is the least important to management performance and 9 refers to the most important to management performance. Numbers fall between 1-9 refer to the influence of indicators to management performance to different degree.

If the corresponding evaluation indicator j of incubator of type i is a backward indicator, its value of a quantity is $v_i(j)$, then the transformed value of a quantity as normal indicator is $u_i(j)$. There is:

$$u_{i}(j) = \min_{j \in [n]} \left(v_{i}(j)\right) / v_{i}(j) \tag{1}$$

In particular, if the corresponding evaluation indicator j of incubator of typei is a backward indicator, its value of a quantity is $v_i(j) = [v_i^{min}(j), v_i^{max}(j)]$, then the transformed value of a quantity $u_i(j)$ as normal indicator is:

$$u_{i}(j) = \left[u_{i}^{min}(j), u_{i}^{max}(j)\right]$$

$$= \left[\min_{1 \le i \le n} \left(v_{i}(j)\right) / v_{i}^{min}(j), \min_{1 \le i \le n} \left(v_{i}(j)\right) / v_{i}^{max}(j)\right]$$
(2)

If the corresponding evaluation indicator j of incubator of type i is a moderate indicator, its value of a quantity is $v_i(j)$, then the transformed value of a quantity $u_i(j)$ as normal indicator is:

$$u_{i}\left(j\right) = \min_{1 \le i \le n} \left(v_{i}\left(j\right), v_{i}^{0}\left(j\right)\right) / \max_{1 \le i \le n} \left(v_{i}\left(j\right), v_{i}^{0}\left(j\right)\right) \tag{3}$$

In the expression, $v_i^0(j)$ is the given value of a quantity for moderate indicator.

In particular, if the corresponding evaluation indicator j of incubator of type i is a moderate indicator, its value of a quantity is $v_i(j) = [v_i^{min}(j), v_i^{max}(j)]$, then the transformed value of a quantity $u_i(j)$ as normal indicator is:

$$u_{i}(j) = \left[u_{i}^{min}(j), u_{i}^{max}(j)\right]$$

$$= \left[\min_{1 \le i \le n} \left(v_{i}^{min}(j), v_{i}^{0}(j)\right) / \max_{1 \le i \le n} \left(v_{i}^{max}(j), v_{i}^{0}(j)\right), \min_{1 \le i \le n} \left(v_{i}^{max}(j), v_{i}^{0}(j)\right) / \max_{1 \le i \le n} \left(v_{i}^{max}(j), v_{i}^{0}(j)\right)\right]$$

$$(4)$$

3.2 Extension distance of management performance evaluation indicator

If the value of quantity of evaluation indicator j of enterprise incubator p is point value $v_p(j)$, then the extension distance $\rho^p_i(j)$ of evaluation performance i about evaluation indicator j is:

$$\rho_{i}^{p}(j) = \left| v_{p}(j) - \frac{v_{i}^{min}(j) + v_{i}^{max}(j)}{2} \right| - \frac{v_{i}^{max}(j) - v_{i}^{min}(j)}{2}$$
(5)

If $v_p(j) = (v_i^{min}(j) + v_i^{max}(j))/2$, then $\rho_i^{\rho}(j)$ is the minimum value, which means $v_p(j)$ is the closest to $v_i(j)$. At this moment, the optimal point $v_i^{\rho}(j)$ of evaluation indicator j is at the middle of the interval $v_i(j) = [v_i^{min}(j), v_i^{max}(j)]$, that is, $v_i^{\rho}(j) = v_p(j) = (v_i^{min}(j) + v_i^{max}(j))/2$.

If the optimal point is not at the middle of the indicator interval $v_i(j) = [v_i^{min}(j), v_i^{max}(j)]$ and if it fits $v_i^0(j) \in [v_i^{min}(j), ((v_i^{min}(j) + v_i^{max}(j))/2)]$, then the extension distance $\rho_i^0(j)$ of evaluation performance type i about evaluation indicator j is a left side-distance and is expressed by:

$$\rho_{i}^{p}(j) = \begin{cases}
v_{i}^{min}(j) - v_{p}(j) & v_{p}(j) \leq v_{i}^{min}(j) \\
\frac{\left(v_{i}^{max}(j) - v_{i}^{O}(j)\right) * \left(v_{p}(j) - v_{i}^{min}(j)\right)}{v_{i}^{min}(j) - v_{i}^{O}(j)} & v_{p}(j) \in \left(v_{i}^{min}(j), v_{i}^{O}(j)\right) \\
v_{p}(j) - v_{i}^{max}(j) & v_{p}(j) \geq v_{i}^{O}(j)
\end{cases}$$
(6)

If the optimal point is not at the middle of the indicator interval $v_i(j) = [v_i^{min}(j), v_i^{max}(j)]$ and if it fits $v_i^o(j) \in [((v_i^{min}(j) + v_i^{max}(j))/2), v_i^{max}(j)]$, then the extension distance $\rho_i^o(j)$ of evaluation performance type i about evaluation indicator j is a right side-distance and is expressed by:

$$\rho_{i}^{p}(j) = \begin{cases}
v_{i}^{min}(j) - v_{p}(j) & v_{p}(j) \leq v_{i}^{O}(j) \\
\frac{\left(v_{i}^{min}(j) - v_{i}^{O}(j)\right) * \left(v_{i}^{max}(j) - v_{p}(j)\right)}{v_{i}^{max}(j) - v_{i}^{O}(j)} & v_{p}(j) \in \left(v_{i}^{O}(j), v_{i}^{max}(j)\right) \\
v_{p}(j) - v_{i}^{max}(j) & v_{p}(j) \geq v_{i}^{max}(j)
\end{cases}$$
(7)

In particular, if the value of quantity of enterprise incubator p about evaluation indicator j is an interval value $v_p(j) = [v_p^{min}(j), v_p^{max}(j)]$, for $v_i^0(j) \in [v_i^{min}(j), ((v_i^{min}(j) + v_i^{max}(j))/2)]$, the extension distance $\rho_i^0(j)$ of evaluation performance type i about evaluation indicator j is a left side-distance and is expressed by:

$$\rho_{i}^{P}(j) = \begin{cases}
v_{i}^{min}(j) - v_{p}^{min}(j) & \frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \leq v_{i}^{min}(j) \\
\frac{\left(v_{i}^{max}(j) - v_{i}^{O}(j)\right) * \left(v_{p}^{min}(j) - v_{i}^{min}(j)\right)}{v_{i}^{min}(j) - v_{i}^{O}(j)} & \frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \in \left(v_{i}^{min}(j), v_{i}^{O}(j)\right) \\
v_{p}^{max}(j) - v_{i}^{max}(j) & \frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \geq v_{i}^{O}(j)
\end{cases}$$
(8)

Similarly, if the value of quantity of enterprise incubator p about evaluation indicator j is an interval value $v_p(j) = [v_p^{min}(j), v_{maxp}(j)]$, for $v_i^o(j) \in [((v_i^{min}(j) + v_i^{max}(j))/2), v_i^{max}(j)]$, the extension distance $\rho_i^o(j)$ of evaluation performance type i about evaluation indicator j is a right side-distance and is expressed by:

$$\rho_{i}^{p}(j) = \begin{cases}
v_{i}^{min}(j) - v_{p}^{min}(j) & \frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \leq v_{i}^{O}(j) \\
\frac{\left(v_{i}^{min}(j) - v_{i}^{O}(j)\right) * \left(v_{i}^{max}(j) - v_{p}^{max}(j)\right)}{v_{i}^{max}(j) - v_{i}^{O}(j)} & \frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \in \left(v_{i}^{min}(j), v_{i}^{max}(j)\right) \\
v_{p}^{max}(j) - v_{i}^{max}(j) & \frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \geq v_{i}^{max}(j)
\end{cases}$$

$$\frac{v_{p}^{min}(j) + v_{p}^{max}(j)}{2} \geq v_{i}^{max}(j)$$
(9)

3.3 Extension membership degree of management performance evaluation indicator

After the extension distance ρ_i^p (j) is calculated, we can construct the extension correlation function K_i^p (j) of enterprise incubator p about evaluation indicator j and evaluation performance type i:

$$K_{i}^{p}(j) = \begin{cases} -\frac{\rho_{i}^{p}(j)}{\left|v_{i}^{max}(j) - v_{i}^{min}(j)\right|} & v_{p}(j) \in v_{i}(j) \\ 0 & \rho_{o}^{p}(j) - \rho_{i}^{p}(j) = 0 \\ \frac{\rho_{i}^{p}(j)}{\rho_{o}^{p}(j) - \rho_{i}^{p}(j)} & v_{p}(j) \notin v_{i}(j) \end{cases}$$

$$(10)$$

In the expression, $\rho_{o}^{p}(j)$ refers to the extension distance between $v_{p}(j)$ and $v_{o}(j) = \left[\min_{1 \leq i \leq m} v_{i}^{min}(j), \max_{1 \leq i \leq m} v_{i}^{max}(j)\right]$. The calculation process and formula is the same from (1) to (9).

Therefore, we can get the extension membership degree EMD_i^p of enterprise incubator about all evaluation indicators and evaluation performance type i:

$$EMD_i^p = \frac{1}{N} \sum_{j=1}^N K_i^p \left(j \right) \tag{11}$$

If evaluation indicators have different weights from each other, then the extension membership degree EMD_i^p is expressed as:

$$EMD_i^p = \sum_{j=1}^N \left(w_j * K_i^p \left(j \right) \right) \tag{12}$$

Therefore, we can get the grade of the management performance of the enterprise incubator according to the extension membership degree, as is shown in formula (13),

$$EMD_{max} = \max\left(EMD_1^p, EMD_2^p, \cdots, EMD_m^p\right) = EMD_s^p$$
(13)

Then, EMD_s^p 's corresponding management performance type s is the grade of the enterprise incubator p. The grade can be used for improvement and further planning of the incubator management.

The algorithm of the management performance evaluation model of science & technology enterprise incubator based on extension membership degree is described as follows:

Step 1: Abide by certain principles for indicator selection, find out key factors that influence the evaluation and construct the management evaluation indicator system;

Step 2: Consult with related experts and categorize the grade of management performance according to real situation of incubators;

Step 3: Standardize evaluation indicators according to formula (1) to (4);

Step 4: Acquire the value of quantity of the management performance about the evaluation indicator. Use formula (5) to (9) to calculate the extension distance of the management performance about different evaluation indicators and the management performance type;

Step 5: Acquire the extension correlation function of the enterprise incubator about evaluation indicator j and evaluation performance type i according to formula (10);

Step 6: Acquire the extension membership degree between the management performance and the management performance type according to formula (11) or (12) and get the grade of the management performance of the enterprise incubator according to formula (13).

4. CASE STUDY AND TEST

Management performance of one new emerging hi-tech enterprise incubator in the economic development zone is selected as the objective of the case study to test the model and the algorithm. Through on-the-spot surveys, questionnaires and experts opinions, the weights of evaluation indicators are determined, as is shown in Table 2.

Table 2 Management performance evaluation indicators of science & technology enterprise

Criterion layer	Weight	Indicator layer	Weight	Latest	Grade of management performance			
				incubating data	Grade I	Grade II	Grade III	
Incubatin g developm ent ability	0.30	Percentage of success of incubating enterprises	0.25	0.75	0.8-1.0	0.6- 0.8	0-0.6	
		Number of incubating enterprises	0.20	33	30-50	15-30	0-15	
		Incubating profit	0.30	0.85	0.8-1.0	0.6- 0.8	0-0.6	
		Percentage of survival of incubating enterprises	0.25	0.65	0.8-1.0	0.6- 0.8	0-0.6	
Technolog ical innovatio n ability	0.25	Scientific achievement	0.25	12	20-40	8-20	0-8	
		Technical transformati onability	0.30	0.35-0.45	0.7-1.0	0.4- 0.7	0-0.4	
		Training and learning ability	0.20	0.75-0.85	0.6-1.0	0.6- 0.8	0-0.6	
		Number of cooperation projects of education combined with	0.25	7	10-25	5-10	0-5	

		research and products					
Economic performa nce	0.25	Cost of incubating	0.30	80	0-50	50- 120	120- 300
		Resource utilization rate of incubating	0.35	0.65-0.75	0.8-1.0	0.6- 0.8	0-0.6
		Growth rate of income of the incubating enterprise	0.35	0.15-0.25	0.4-1.0	0.15- 0.4	0-0.15
Social- profit performa nce		Employment growth rate	0.30	0.35-0.45	0.4-1.0	0.15- 0.4	0-0.15
		Industrial value-added rate of incubating enterprises	0.30	0.08-0.12	0.15- 1.0	0.05- 0.15	0-0.05
	0.20	Lifting force of soft environment of incubating enterprises	0.20	0.45-0.55	0.6-1.0	0.3- 0.6	0-0.3
		Lifting force of hard environment of incubating enterprises	0.20	0.3-0.4	0.6-1.0	0.3- 0.6	0-0.3

Based on the extension distance formula, we can get the extension distance between each evaluation indicator and management evaluation grade, as is shown in Table 3.

 Table 3 Extension distance of management performance evaluation

Indicator layer		Extension distance			
		$ ho_{\!\scriptscriptstyle pI}$	Р рІІ	$ ho_{\!\scriptscriptstyle pIII}$	
Percentage of success of incubating enterprises	-0.25	0.05	-0.05	0.15	
Number of incubating enterprises	-17	-3	3	18	
Incubating profit	-0.15	-0.05	0.05	0.15	
Percentage of survival of incubating enterprises	-0.35	0.15	-0.05	0.05	
Scientific achievement	-28	8	-4	4	
Technical transformationability	-0.6	0.15	0	0	
Training and learning ability	-0.2	0	0	0.2	
Number of cooperation projects of education combined with research and products	-18	3	-2	2	
Cost of incubating	-220	30	-30	40	
Resource utilization rate of incubating	-0.3	0.1	-0.1	0.1	
Growth rate of income of the incubating enterprise	-0.8	0.2	-0.05	0.05	
Employment growth rate	-0.6	0	0	0.25	
Industrial value-added rate of incubating enterprises	-0.9	0	-0.05	0.05	
Lifting force of soft environment of incubating enterprises	-0.5	0.1	-0.1	0.2	
Lifting force of hard environment of incubating enterprises	-0.65	0.15	0	0	

Therefore, we can get the extension correlation function between each evaluation indicator and management performance grade, as is shown in Table 4.

Table 4 Extension correlation function of management performance evaluation

Indicator layer		Extension correlation function			
	K_{pI}	K_{II}^p	K_{III}^p		
Percentage of success of incubating enterprises	-0.167	0.250	-0.375		
Number of incubating enterprises	0.150	-0.150	-0.514		
Incubating profit	0.200	-0.250	-0.500		
Percentage of survival of incubating enterprises	-0.300	0.250	-0.125		
Scientific achievement	-0.222	0.333	-0.125		
Technical transformationability	-0.200	0	0		
Training and learning ability	0	0	-0.500		
Number of cooperation projects of education combined with research and products	-0.143	0.400	-0.100		
Cost of incubating	-0.120	0.429	-0.154		
Resource utilization rate of incubating	-0.250	0.500	-0.250		
Growth rate of income of the incubating enterprise	-0.200	0.200	-0.059		
Employment growth rate	0	0	-0.294		
Industrial value-added rate of incubating enterprises	0	0.500	-0.053		
Lifting force of soft environment of incubating enterprises	-0.167	0.333	-0.286		
Lifting force of hard environment of incubating enterprises	-0.188	0	0		

According to the algorithm provided by this paper, we can get the comprehensive extension membership degree sequence between management performance and management performance grade, namely, $EMD=(EMD_I^{\rho}, EMD_{II}^{\rho}, EMD_{III}^{\rho})=(-0.107, 0.186, -0.222)$.

We can see $EMD_{max} = EMD_{II}^{p}$, which means that the management performance falls into grade II. It is in line with the real situation.

5. CONCLUSION

This paper proposes a management evaluation model of science & technology enterprise incubator based on extension membership degree, aiming at solving problems presented in management performance. It constructs extension distance and extension side-distance of evaluation indicators and get corresponding extension correlation function and extension membership degree. The membership of the management performance is available based on extension membership degree. Empirical study is in line with real situation, which means that the model proposed by this paper can provide policy support to the management of science & technology enterprise incubator.

6. ACKNOWLEDGMENT

This Paper is stage result of "Research on the Construction of College Virtual Venture Incubation Platform under the Internet Background" (No.16KRM040), which is one of 2016 Soft science projects of Shaanxiprovince Science and Technology Department.

7. REFERENCES

Cai W., Yang C. (2013). Fundamental Theories and Methods of Extenics, Chinese Science Bulletin, 58(13), 1190-1199.

- Gang D. (2009). Establishment of Evaluation System of the Incubating Performance and Evaluation Model, Science Technology and Engineering, 9(2), 520-524.
- Jia B. (2009). Study on the Evaluation of Business Incubator Performance, Keji Jingji Shichang, 10, 71-72.
- Lei X., Qiu R. (2013). Evaluation of Scientific and Technological Competitiveness Based on Entropy Extension Decision Model, Science & Technology Progress and Policy, 30(03), 122-127.
- Li W., Guo C., Meng W., Ma L. (2013). Optimization and Decision-making for Mine Ventilation System Base on Extension Superiority Evaluation Method, Mathematics in Practice and Theory, 43(19), 103-107.
- Liu Y. (2011). Analysis on the Performance Evaluation of Science & Technology Enterprise Incubator Based on Principal Components, Science and Technology Management Research, 14, 76-80+88.
- Sun Q., Zhang X. (2004). A Fuzzy Evaluation Method of Enterprise Incubator Operation, Scientific research management, 4, 129-133+160.
- Wang T., Yang A., Bu L. (2013). Mechanism scheme design based on multi-attribute extension gray relevant optimized decision-making model, Systems Engineering-Theory & Practice, 33(9), 2321-2329.
- Wang T., Yang A., Zhong S. (2014). Multi-attribute extension fuzzy optimized decision-making model of scheme design, Tehnički vjesnik/Technical Gazette, 21(2), 239-247.
- Xu L., Liu N., Li D. (2006). Grey Comprehensive Evaluation of Science & Technology Enterprise Incubator Management-Case Study of Nanjing, Scientific and technological progress and countermeasures, 26(1), 131-133.
- Yan J., Jian L., Hu S. (2004). Designing the Evaluation Index System of Management Performance of S&T Enterprise Incubators, Science Of Science And Management Of S. &T., 6, 44-47.
- Yang C., Cai W. (2012). Recent Research Progress in Dependent Functions in Extension Sets, Journal of Guangdong University of Technology, 29, 7-14.
- Zhang P., Zhan H. (2010). Performance Evaluation of Science and Technology Enterprises Incubator in Guangdong Province based on DEA, Science and Technology Management Research, 14, 78-81.