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Abstract 

With the tremendous popularity of the Kinect, recognizing human actions or gestures 

from skeletal data becomes more feasible. Skeletal data is a more exact data than RGB 
video while it eliminates the occlusions that caused by the limbs of the actor. Previous 
neural network based approaches recognize actions by learning spatial-temporal features. 
However, nobody can explain what are those features represent. Different from them, 
we propose a novel action recognition framework based on conceptors of skeleton joint 
trajectories. Conceptor is a mechanism of neurodynamical organization. We compute 
conceptor for the trajectory of each dimension of the skeleton joint, and use the singular 
value vector to represent the trajectory. Then, we encode singular value vectors as 
binary vectors by using a clustering method. At last, we use softmax regression to 
recognize the trajectory codes. This is a novel framework which recognizes actions using 
the conceptual level information. Extensive experiments on benchmark datasets confirm 
the efficiency of this framework. 

Keywords: action recognition, conceptor, skeletal joint trajectories, softmax regression, 
recurrent neural network.  

 

1. INTRODUCTION 

Recognizing actions from human action videos or skeletal data gets much attention 
recent years. It enables wide applications such as intelligent surveillance, video 
understanding, human-computer interaction and smart home. Currently, most of the 
action recognition works (Dawn and Shaikh 2016; Pei et al., 2014; Pei et al., 2014; Pei 
et al., 2015; Pei et al., 2014) are focused on recognizing actions from RGB videos. 
Meanwhile, some research works recognize actions from multi-modal data, such as audio 
files, depth videos, RGB videos, skeleton, and so on. In most practical applications, 
multi-modal data is difficult and expensive to collect. With the popularity of the Kinect, 
collecting skeleton data of human actions becomes easier. To be robust to the confusions 
that caused by the limbs, clothes color or texture of the actor, recognizing actions from 
skeleton data (Jiang et al., 2014; Wang et al., 2016) is a wise choice. 

With the development of deep learning, many neural network based approaches are 
proposed to recognize actions by learning spatio-temporal features. Those features are 
learned from the pixel data of the action videos. Although those features get excellent 
performance on action recognition, any literatures can not explain what are those 
features represent. This is different with human brain. The neural network is designed to 
processing data by imitating the human brain. While the human brain knows what it 
learns, the neural network has no idea on what it learns. Jrgen Schmidhuber says that 
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the human brain is a recurrent neural network (RNN). It can learn many behaviors that 
are not able to learn by traditional machine learning methods. 

Another problem of those deep learning approaches is that they assume the input size 
and output size of the neural network are fixed. Affected by the action speed, behavior 
habit or action category, usually, the temporal lengths of the action sequences are not 
fixed. Despite images can be cropped or resized, action sequences are not amenable to a 
straightforward reduction for fixed size. 

Some approaches are natural ways for sequence data processing. Such as Hidden 

Markov Model (HMM), RNN, etc. Those algorithms have no temporal size limitation. They 
are appropriate for action sequence processing. Combined with HMM, the Gaussian 
Mixture Model (GMM) (Murphy, 2012) and the Deep Belief Network (DBN) (Wu and Shao, 
2014) are used to recognize actions from skeletal data. The two probability based 
approaches get good performance on action recognition. However, they can not 
remember the learned actions similar as the dynamical system RNN. 

Based on RNN, a mechanism of neurodynamical organization is proposed, called 
Conceptor (Jaeger, 2014). It is possible to learn, store, abstract, generalize, de-noise 
and recognize dynamical patterns. We try to directly use the conceptor to regenerate the 
action skeletal sequence. It fails, because RNN have been shown to yield good 
performance for one dimensional sequences rather than high dimensional data (Palangi 
et al., 2013). When we use the conceptor to regenerate the trajectory of each dimension 

of the skeleton joints, it works. Based on this, we propose a novel framework to 
recognize actions from skeletal data. 

At first, we compute a conceptor for the trajectory of each dimension of the skeleton 
joints. Then, the singular values of each conceptor are computed. For each dimension of 
the skeleton joints, all of the singular value vectors are clustered into several groups. 
Each singular value vector is encoded as a binary vector by k-means clustering 
algorithm.The skeletal actions are represented as vectors by combing those binary 
vectors. At last, we use softmax regression to recognize actions.The contributions of this 
method are multi-folds. First, at the conceptual level, we propose a novel framework to 
recognize actions.Second, different from other neural network based approaches which 
learns spatio-temporal features, we use the singular value vectors of the computed 
conceptors to represent the trajectories of the skeletal joints. Third, to reduce the 

dimension of the representation, we encode the singular value vectors as binary vectors 
using clustering algorithms. It is effective while using softmax regression to recognize 
actions. 

The rest of this paper is organized as follows. After introducing the related works in 
Section 2, we give a detailed description of the proposed action recognition framework in 
Section 3. Then, the experiment validations are provided in Section 4. At last, Section 5 
concludes this work. 

2. RELATED WORKS 

Skeletal data can be obtained by many approaches. Traditionally, the skeletal joint data 
are acquired by MoCap system (Muller and Roder, 2006). Currently, most of the skeletal 
data are acquired by the Kinect (Han et al., 2013). This device can extract human body 
joints in real time with reasonable accuracy. It has been found wide applications. With 
the development of the depth of computer vision research, some works (Toshev and 
Szegedy, 2014) focus on estimating skeleton from images. In this paper, we use the 
skeletal data that obtained by the Kinect to validate our approach. 
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Based on the action feature representation, the approaches that recognizing actions from 
skeletal data can be simply classified into two categories. One category is based on the 
frame-level features (Lv and Nevatia 2006; Muller Roder 2006; Wu and Shao 2014; Xia 
and Chen 2012; Yao et al., 2012). Most of such features are called pose features. The 

other category is based on the trajectory descriptors (Gowayyed et al., 2013; Ohn-Bar 
and Trivedi 2006; Qiao et al., 2015).The two category approaches have fast 
developments because of two reasons. In each frame, the skeleton joints have obvious 
geometric relationships that can be recorded machine learning techniques. For the whole 
action sequence, the skeletal joints are strictly corresponded over all the frames. So the 
trajectory of each joint can be easily and correctly achieved. 

For the frame-level features based approaches, there are some classical features. As the 
harbinger of exploring skeletal joint data, (Muller and Roder, 2006) introduces the 
relational pose features for indexing and retrieving the motion capture data. Then, (Yao 
et al., 2012) modified the relational pose features to recognize actions. (Lv and Nevatia, 
2016) designs a feature vector, the vector represents the pose of the combination of 
multiple joints or a single joint. (Wu and Shao, 2014) extracts the high level skeletal 

joints representation using the deep belief network. Take the quantized histogram of 
spherical coordinates of joint locations as frame-level features, (Xia and Chen, 2012) 
models the action sequence using HMM. 

For the trajectory based methods, most approaches model the trajectory holistically. 
(Gowayyed et al., 2013) records the joint orientation displacements over the whole 

trajectory using a histogram. (Ohn-Bar and Trivedi, 2013) uses the pairwise affinities 
trajectories of joint angles to model actions. (Qiao et al., 2015) recognizes skeleton-
based actions by learning discriminative trajectory detector sets. Mingxi Zhang (2016) 
proposed a moving body recognition model based on mean shift algorithm optimized by 
gradient features and conducted simulation experiment. 

In this paper, we propose a novel action recognition approach based on the trajectory of 
each dimension of the skeletal joints. Different with the previous methods, it is a 
concept-level cognition system. Based on the conceptor mechanism, the actions can also 
be regenerated. Using a dynamic system with memory function to recognize action is a 
new attempt for action recognition. 

3.  METHODOLOGY 

In this paper, we use the recurrent neural network that which is controlled by 
Conceptors (Jaeger, 2014) as a basic block to build an action recognition framework. At 
first, we give some preliminaries of Conceptors. Then, we provide a detail description of 
our action recognition framework. In addition, we split the whole framework into three 
procedures, and each procedure is demonstrated respectively. 

3.1 Conceptor 

Based on recurrent neural network, Herbert Jaeger uses neural filters that which are 
called Conceptors to characterize dynamical neural activation patterns. This approach 
has an excellent performance for one dimensional sequences. The architecture of 
standard recurrent neural network is shown in Fig. 1. In this figure, p denotes the input 

dynamic pattern, inW  and outW are the input weight matrix and the output weight matrix, 

x denotes the activation states, y is the output. The middle layer of the network is a 

reservoir. Its neurons are connected by random synaptic links. W is the weight matrix of 

the reservoir. 
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Figure 1. The architecture of standard recurrent neural network. The arrows present 
synaptic links. 

Driving the reservoir using a dynamic patterns )(np , the update function is shown as 

follows. 

),)1()(tanh()1( bnpWnWxnx in                                                                           (1)  

).()( nxWny out                                                                                                        (2) 

Convenient for introducing our action recognition framework, we introduce the 
Definition 1 and the Proposition 1 of (Jaeger, 2014). 

Definition 1 Let ]'[xxER  be an NN  correlation matrix and ).,0(  The conceptor 

matrix ),( RCC  associated with R  and   is 

.][minarg),(
222

froC CCxxERC                                                                        (3) 

Proposition 1 Let ]'[xxER  be a correlation matrix and ).,0(   Then, ),( RCC  can 

be directly computed from R  and  by 

.)()(),( 212 RIRIRRRC                                                                              (4) 

3.2 Network architecture 

The architecture of our action recognition framework is shown in Fig. 2. Coarsely, the 
framework can be separated into two parts. The action representation procedure and the 
action classification procedure. In this section, we give a general description of our 
framework. With the general impression, the detailed introductions and analyses of the 
two procedures are shown in the following sections. 

In Fig. 2, ),...,,( 21 nppp represent the skeletal joint trajectories. The input weight inW  and 

its corresponding bias are fixed with random values
*W . For each trajectory pattern, we 

use it to drive the reservoir. Update the reservoir states x using Function 1. After a 

washout time, the reservoir states are collected in x . According the Definition 1 and 

Proposition 1, the conceptor C  are computed. Then, the singular values of the conceptor 

are computed. With a descending order, the singular values are represented as a  



Revista de la Facultad de Ingeniería U.C.V., Vol. 31, N°4, pp. 11- 22, 2016 

15 

 

 

Figure 2. Action recognition framework based on Conceptors. 

singular value vector. Using the clustering algorithms, the singular value vector are 
encoded as a binary vector. Combined with other trajectory coders, the action sequence 

are represented as a binary vector. At last, we use a modified softmax regression 
algorithm to recognize actions. 

3.3  Representation of skeleton trajectories 

Limited by the conclusion (Palangi et al., 2014) that echo state networks have shown to 

yield good performance on one dimensional sequences rather than high dimensional data. 

For the trajectory of a skeletal joint iP , in the screen coordinates, it is denoted as 

).,( 212 ii pp  Based on the theory of conceptor, we compute the conceptor of the two 

dimensional dynamic pattern. However, many conceptors fail to regenerate their 
corresponding two dimensional patterns. For the trajectory of the skeletal joint, its 
temporal length, movement velocity and range have great arbitrariness because of the 

personal habits. Most of the current literatures are difficult to regenerate the action 
skeleton joint trajectories. 

Considering the excellent ability of echo state network on one dimensional data 

processing, according to the dimension of the trajectory, each skeletal joint trajectory iP  

can separated into two trajectories 12 ip and ip2 . Then, we compute the conceptor of each 

trajectory. The conceptor contains enough information to regenerate (Jaeger, 2014) the 
trajectory of the action skeleton joint. 

Using the singular value decomposition algorithm, we compute the singular values for 
each conceptor. With a descending order, the singular values are represented as a 
Singular Value Vector(SVV). In Fig. 3, the corresponding singular value vectors of those 

trajectories are depicted in the left columns of the six figures (a)-(e). In this paper, the 
coordinates of the skeletal joints are normalized to )1,1( . So, the trajectories of each 

dimension of the skeletal joints are one dimensional numerical sequences that varying 
over time in the range of )1,1( . 

After collecting the singular value vectors of each trajectory dimension, We cluster them 
by using the k -means algorithms. Each collection is clustered into k groups. To encode a 
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singular value vector for the same trajectory dimension, we calculate the metric 
distances between the centers of the k groups and the SVV. The distance vector 

),...,,( 21
j

k
jjj dddd  is used to represent the singular value vector of the corresponding 

trajectory that which is indexed by j . The whole skeletal action is encoded as 

),...,,( 21 ndddD  by combing those representations of the action joint trajectories. For 

simplicity, we denote ),...,,( 21 ndddD  as ).,...,,( *21 nkdddD   

3.4  Action recognition 

The human actions are dynamic patterns with uncertainty temporal length. As described 
above, based on the Conceptor techniques, the skeletal actions are encoded as feature 

vectors with definite dimension. For each skeletal action iS  of the action training set, it is 

represented as feature vectors iD . Then, we use a multi-class classifier softmax 

regression to recognize actions. 

For each test action representation iD , we use );( iDjyp  to represent the estimated 

probability for each action class category j . Assume the action class number of one 

action data set is m , the hypothesis function )( iDh of softmax regression is as follows, 

,
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All of the model parameters are learned by minimizing the cost function of the softmax 
regression algorithm. The cost function is shown as follows, 
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Figure 3. Some samples of the singular value vectors and their corresponding 
trajectories. For the right columns of figures (a)-(e), the blue lines are the trajectories of 

one dimension of skeletal joints, and the red lines are the regenerated trajectories that 
produced by Conceptors. The curves of the left columns of figures (a)-(e) are the 

computed singular value vectors of the right trajectories. 

where .1 is an indicator function. With enough training action samples, we use L-BFGS 

algorithm to solve the optimization problem. 

4.  EXPERIMENTS 

To validate the effectiveness of the proposed algorithm, we perform multiple 
experiments. First of all,  we performed a regeneration experiment to demonstrate that, 
the conceptor contains enough information to regenerate the trajectory of each action 
skeleton joint. Then, we performed the action recognition experiment on two benchmark 
skeleton action datasets, ChaLearn Italian Gesture dataset and MSR Action3D dataset, 
and the proposed algorithm shows good experiment results. 

4.1 Effectiveness Of the SVV representation 

As demonstrated in (Jaeger, 2014), with the participation of conceptors, a recurrent 
neural network can regenerate different model patterns that which has previously been 
driven with. Using the algorithms that provided by (Jaeger, 2014), we regenerate the 
trajectories of each dimension of the action skeleton joints. In Fig. 3, some trajectories 
of one dimension of the skeletal joints (blue) and the regenerated trajectories (red) are 
depicted in the right columns of the six figures (a)-(e). We can find that the trajectories 
are correctly regenerated. It demonstrates that the Conceptor has enough information to 
regenerate the trajectory. 

In Fig. 3, the trajectories of (b) and (e) have similar movement trends, the computed 
singular value vectors are similar with each other. (a) is a example of a stationary 
trajectory and (c) is a trajectory with slight movement, the singular value vectors are 
different. (a) and (d) are almost stationary trajectories of skeletal joints. However, the 
coordinate values of the two trajectories are different. The computed singular value 
vectors are different with each other. From those figures, we can find that, to a certain  
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Figure 4. The 20 actions of the Chalearn Italian Gesture Dataset. 

extent, those singular value vectors depict the trajectories of each dimension of the 
skeletal joints. For similar trajectories, the computed singular value vectors are similar 
with each other. Instead, the Singular Value Vectors have a great difference. 

4.2 Action recognition experiment on ChaLearn Italian Gesture Dataset 

The ChaLearn Italian Gesture Dataset (Escalera et al., 2013) is organized for the multi-
modal gesture recognition challenge 2013. It is a multi-modal data set recorded by the 
Kinect camera. This dataset includes RGB video streams, depth images, user masks, 
skeletal data and audio data. In this paper, we only focus on the skeletal data. Each 
skeleton includes 20 joints. We perform experiments on the pixel positions of the 
skeletal joints. This dataset contains 20 Italian cultural/anthropological signs (Fig. 4). 
The names of those gestures are as follows, (1) vattene, (2) vieniqui, (3) perfetto, (4) 
furbo, (5) cheduepalle, (6) chevuoi, (7) daccordo, (8) seipazzo, (9) combinato, (10) 

freganiente, (11) ok, (12) cosatifarei, (13) basta, (14) prendere, (15) noncenepiu, (16) 
fame, (17) tantotempo, (18) buonissimo, (19) messidaccordo, (20) sonostufo. 

To compare with other skeletal data based approaches, similar as (Wu and Shao, 2014), 
we perform experiments on a subset of this dataset. This set includes 393 sections. Each 
section contains between 8 and 20 gesture instances. In all, there are 7754 gestures for 
the experiments. Following the experiment setup of other approaches (Wu and Shao, 
2014), we use the gestures of 350 sections to train the parameters, and the rest 43 
sections are used for testing. With the above experiment setup, we performed the 
human action recognition experiment on the ChaLearn Italian Gesture dataset. While 
training the parameters, we use some copies of the training action sections with a little 
change of the action skeleton joint trajectories. 
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Tabla 1 Average accuracy comparison on ChaLearn Italian Gesture Dataset. 

Method Accuracy 

GMM+HMM [Murphy, 2012] 0.408 

EigenJionts [Yang and Tian, 2012] 0.593 

NN+DTW [Wu et al., 2013] 0.599 

DBN+HMM [Wu and Shao, 2014] 0.628 

Our Method 0.651 

Tabla 2 Average accuracy comparison on MSR Action3D Dataset. 

Method Accuracy 

Sequence of Most Information Joints [Ofli et al., 2014] 0.29 

Recurrent Neural Network [Martens and Sutskever, 2011] 0.425 

Dynamic Temporal Warping [Muller and Roder, 2006] 0.54 

Hidden Markov Model [Lv and Nevatia, 2006] 0.63 

Multiple Instance Learning [Ellis et al., 2013] 0.657 

GMM+HMM [Murphy, 2012]  0.704 

EigenJoints +DBNN [Yang and Tian,2012] 0.72 

Structured Streaming Skeletons [Zhao at el., 2013] 0.817 

DBN + HMM [Wu and Shao, 2014] 0.82 

Our Method 0.834 

The action recognition result is shown in Table 1, and we compared the proposed action 
recognition algorithm with the state-of-the-art approaches that which are based on 
action skeleton information. The compared algorithms include the deep learning methods 
and the traditional machine learning approaches. Such as the deep learning 
algorithm(Wu and Shao, 2014) which uses deep belief neural network to process action 
skeleton information, and as the traditional machine learning algorithms (Murphy 2012; 
Wu et al., 2013; Yang and Tian 2012) which uses hidden markov model, naive-bayes-
nearest-neighbor, or dynamic time warping to recognize actions. The proposed algorithm 
is different with them because that it import conceptors to represent action skeleton 
joint trajectories. Above all, the usage of conceptor improved the action recognition 
performance. From Table 1, it can be seen that the proposed algorithm get a better 
recognition performance. 

4.3 Action recognition experiment on MSR Action3D Dataset 

The MSR Action3D Dataset (Wang et al., 2012) is an action dataset that recorded by a 
depth sensor. The depth sensor is similar as the Kinect device. There are 20 action 
categories performed by 10 subjects in this dataset. Each action is performed 2 or 3 

times by each subject. In this experiment, we only focus on the skeletal data of this 
dataset. There are 557 skeletal action sequences. Each skeleton has 20 joint positions. 
The joint position contains four real numbers: .,,, cdvu ),( vu are the screen coordinates, 

d is the depth value, and c is the confidence score. In this paper, we perform 

experiments on the ),,( dvu  coordinates of the skeletal joints. The normalization of the 

coordinates of the skeletal joints is the same as that which is introduced by (Wu and 

Shao, 2014). 

This is a challenging dataset while some of the action skeleton information is very noisy. 
In this dataset, we use the cross-subject experiment setup to perform the action 
recognition experiments. The skeleton action of five subjects are used to train the 
parameters, and the actions of the other five subjects are used for testing. The average 
action recognition result is shown in Table 2, and we compared our results with some of 
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the state-of-the-art action recognition approaches. From this table, we can find that, the 
proposed algorithm get a better performance. 

 

Figure 5. The average recognition accuracy of our method with different values of k 
which are used to generate binary vector for softmax. 

4.4 Parameric analysis 

In our proposed algorithm, the singular value vectors (SVVs) of the computed conceptor 

for the trajectory of of each dimension of the skeleton joint  are encoded as a binary 
vector by using the clustering algorithms. When we generating these binary codes 
(vectors) for the SVVs, the variable k of the k-means clustering algorithm determines 
the dimension of the code. The larger k is, the more categories are classified. That is to 
say, it determines the dimension of input vector of the softmax regression. k becomes 
an indicator of the SVVs and the results of the final classification.   

In order to discover the usefulness of the input binary code, our algorithm is tested with 
different values of k of the k-means clustering algorithm changing from 2-20 with 2 as 
the interval. The result is shown in Fig. 5. In Fig. 5, we compute the average accuracy of 
the action recognition based on two bench mark action datasets. As can be seen, too 
small or too large value of k may both lead to poor performance. Thus, a proper choice 
of k is important for good performance of our proposed algorithm. Experiments found 

that the value of k between 6-12 is a good choice. 

5. DISCUSSION AND CONCLUSION 

By importing conceptor, we proposed a novel action recognition approach based on RNN. 
As some of the current action recognition algorithms, we use the action skeleton 

information to process the actions. Compared with the RGB action videos or other 
formats of human actions, action skeleton is more precise, and it is very easy to avoid 
the occlusion problem that caused by the clothes, human body or the other things. 
However, limited by the action skeleton capture device, some captured skeleton actions 
are very noisy. So, it is still a challenging problem to recognize actions based on the 
skeleton information. 

Currently, most of the action recognition algorithms through extracting spatial temporal 
features or learning the high level codes of actions to achieve recognize. The proposed 
algorithm is different with them. This algorithm computes a conceptor for each 
dimension of the action skeleton joint trajectory. The conceptors are not only a 
representation of the action skeleton joint trajectories. The conceptors contain enough 
information to regenerate the joint trajectories.It is also a mechanism of neurodynamical 

organization. The importation of the conceptor makes it is different with other feature 
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extracting or learning algorithms. The experiment results on two bench mark action 
datasets confirm the effectiveness of the proposed algorithm. 
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