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Abstract

With the tremendous popularity of the Kinect, recognizing human actions or gestures
from skeletal data becomes more feasible. Skeletal data is a more exact data than RGB
video while it eliminates the occlusions that caused by the limbs of the actor. Previous
neural network based approaches recognize actions by learning spatial-temporal features.
However, nobody can explain what are those features represent. Different from them,
we propose a novel action recognition framework based on conceptors of skeleton joint
trajectories. Conceptor is a mechanism of neurodynamical organization. We compute
conceptor for the trajectory of each dimension of the skeleton joint, and use the singular
value vector to represent the trajectory. Then, we encode singular value vectors as
binary vectors by using a clustering method. At last, we use softmax regression to
recognize the trajectory codes. This is a novel framework which recognizes actions using
the conceptual level information. Extensive experiments on benchmark datasets confirm
the efficiency of this framework.

Keywords: action recognition, conceptor, skeletal joint trajectories, softmax regression,
recurrent neural network.

1. INTRODUCTION

Recognizing actions from human action videos or skeletal data gets much attention
recent years. It enables wide applications such as intelligent surveillance, video
understanding, human-computer interaction and smart home. Currently, most of the
action recognition works (Dawn and Shaikh 2016; Pei et al., 2014; Pei et al., 2014; Pei
et al., 2015; Pei et al., 2014) are focused on recognizing actions from RGB videos.
Meanwhile, some research works recognize actions from multi-modal data, such as audio
files, depth videos, RGB videos, skeleton, and so on. In most practical applications,
multi-modal data is difficult and expensive to collect. With the popularity of the Kinect,
collecting skeleton data of human actions becomes easier. To be robust to the confusions
that caused by the limbs, clothes color or texture of the actor, recognizing actions from
skeleton data (Jiang et al., 2014; Wang et al., 2016) is a wise choice.

With the development of deep learning, many neural network based approaches are
proposed to recognize actions by learning spatio-temporal features. Those features are
learned from the pixel data of the action videos. Although those features get excellent
performance on action recognition, any literatures can not explain what are those
features represent. This is different with human brain. The neural network is designed to
processing data by imitating the human brain. While the human brain knows what it
learns, the neural network has no idea on what it learns. Jrgen Schmidhuber says that
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the human brain is a recurrent neural network (RNN). It can learn many behaviors that
are not able to learn by traditional machine learning methods.

Another problem of those deep learning approaches is that they assume the input size
and output size of the neural network are fixed. Affected by the action speed, behavior
habit or action category, usually, the temporal lengths of the action sequences are not
fixed. Despite images can be cropped or resized, action sequences are not amenable to a
straightforward reduction for fixed size.

Some approaches are natural ways for sequence data processing. Such as Hidden
Markov Model (HMM), RNN, etc. Those algorithms have no temporal size limitation. They
are appropriate for action sequence processing. Combined with HMM, the Gaussian
Mixture Model (GMM) (Murphy, 2012) and the Deep Belief Network (DBN) (Wu and Shao,
2014) are used to recognize actions from skeletal data. The two probability based
approaches get good performance on action recognition. However, they can not
remember the learned actions similar as the dynamical system RNN.

Based on RNN, a mechanism of neurodynamical organization is proposed, called
Conceptor (Jaeger, 2014). It is possible to learn, store, abstract, generalize, de-noise
and recognize dynamical patterns. We try to directly use the conceptor to regenerate the
action skeletal sequence. It fails, because RNN have been shown to vyield good
performance for one dimensional sequences rather than high dimensional data (Palangi
et al., 2013). When we use the conceptor to regenerate the trajectory of each dimension
of the skeleton joints, it works. Based on this, we propose a novel framework to
recognize actions from skeletal data.

At first, we compute a conceptor for the trajectory of each dimension of the skeleton
joints. Then, the singular values of each conceptor are computed. For each dimension of
the skeleton joints, all of the singular value vectors are clustered into several groups.
Each singular value vector is encoded as a binary vector by k-means clustering
algorithm.The skeletal actions are represented as vectors by combing those binary
vectors. At last, we use softmax regression to recognize actions.The contributions of this
method are multi-folds. First, at the conceptual level, we propose a novel framework to
recognize actions.Second, different from other neural network based approaches which
learns spatio-temporal features, we use the singular value vectors of the computed
conceptors to represent the trajectories of the skeletal joints. Third, to reduce the
dimension of the representation, we encode the singular value vectors as binary vectors
using clustering algorithms. It is effective while using softmax regression to recognize
actions.

The rest of this paper is organized as follows. After introducing the related works in
Section 2, we give a detailed description of the proposed action recognition framework in
Section 3. Then, the experiment validations are provided in Section 4. At last, Section 5
concludes this work.

2. RELATED WORKS

Skeletal data can be obtained by many approaches. Traditionally, the skeletal joint data
are acquired by MoCap system (Muller and Roder, 2006). Currently, most of the skeletal
data are acquired by the Kinect (Han et al., 2013). This device can extract human body
joints in real time with reasonable accuracy. It has been found wide applications. With
the development of the depth of computer vision research, some works (Toshev and
Szegedy, 2014) focus on estimating skeleton from images. In this paper, we use the
skeletal data that obtained by the Kinect to validate our approach.
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Based on the action feature representation, the approaches that recognizing actions from
skeletal data can be simply classified into two categories. One category is based on the
frame-level features (Lv and Nevatia 2006; Muller Roder 2006; Wu and Shao 2014; Xia
and Chen 2012; Yao et al., 2012). Most of such features are called pose features. The
other category is based on the trajectory descriptors (Gowayyed et al., 2013; Ohn-Bar
and Trivedi 2006; Qiao et al., 2015).The two category approaches have fast
developments because of two reasons. In each frame, the skeleton joints have obvious
geometric relationships that can be recorded machine learning techniques. For the whole
action sequence, the skeletal joints are strictly corresponded over all the frames. So the
trajectory of each joint can be easily and correctly achieved.

For the frame-level features based approaches, there are some classical features. As the
harbinger of exploring skeletal joint data, (Muller and Roder, 2006) introduces the
relational pose features for indexing and retrieving the motion capture data. Then, (Yao
et al., 2012) modified the relational pose features to recognize actions. (Lv and Nevatia,
2016) designs a feature vector, the vector represents the pose of the combination of
multiple joints or a single joint. (Wu and Shao, 2014) extracts the high level skeletal
joints representation using the deep belief network. Take the quantized histogram of
spherical coordinates of joint locations as frame-level features, (Xia and Chen, 2012)
models the action sequence using HMM.

For the trajectory based methods, most approaches model the trajectory holistically.
(Gowayyed et al., 2013) records the joint orientation displacements over the whole
trajectory using a histogram. (Ohn-Bar and Trivedi, 2013) uses the pairwise affinities
trajectories of joint angles to model actions. (Qiao et al., 2015) recognizes skeleton-
based actions by learning discriminative trajectory detector sets. Mingxi Zhang (2016)
proposed a moving body recognition model based on mean shift algorithm optimized by
gradient features and conducted simulation experiment.

In this paper, we propose a novel action recognition approach based on the trajectory of
each dimension of the skeletal joints. Different with the previous methods, it is a
concept-level cognition system. Based on the conceptor mechanism, the actions can also
be regenerated. Using a dynamic system with memory function to recognize action is a
new attempt for action recognition.

3. METHODOLOGY

In this paper, we use the recurrent neural network that which is controlled by
Conceptors (Jaeger, 2014) as a basic block to build an action recognition framework. At
first, we give some preliminaries of Conceptors. Then, we provide a detail description of
our action recognition framework. In addition, we split the whole framework into three
procedures, and each procedure is demonstrated respectively.

3.1 Conceptor

Based on recurrent neural network, Herbert Jaeger uses neural filters that which are
called Conceptors to characterize dynamical neural activation patterns. This approach
has an excellent performance for one dimensional sequences. The architecture of
standard recurrent neural network is shown in Fig. 1. In this figure, pdenotes the input

dynamic pattern, W;, and W, are the input weight matrix and the output weight matrix,
xdenotes the activation states, yis the output. The middle layer of the network is a

reservoir. Its neurons are connected by random synaptic links. W is the weight matrix of
the reservoir.
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Figure 1. The architecture of standard recurrent neural network. The arrows present
synaptic links.

Driving the reservoir using a dynamic patterns p(n), the update function is shown as
follows.

x(n+1) = tanh(Wx(n) +W;, p(n +1) + b), (1)
y(n) :Woutx(n)' (2)

Convenient for introducing our action recognition framework, we introduce the
Definition 1 and the Proposition 1 of (Jaeger, 2014).

Definition 1 Let R=E[xx'] be an N x N correlation matrix and a €(0,%). The conceptor
matrix C =C(R,«a) associated with R and « is

C(R,a) =argmin, E[||X—Cx||2]+a‘2||C||2fm. (3)

Proposition 1 Let R=E[xx']be a correlation matrix and « €(0,»). Then,C =C(R,«) can
be directly computed from R and « by

C(R,a)=R(R+a?l)'=(R+a?I)R. (4)

3.2 Network architecture

The architecture of our action recognition framework is shown in Fig. 2. Coarsely, the
framework can be separated into two parts. The action representation procedure and the
action classification procedure. In this section, we give a general description of our
framework. With the general impression, the detailed introductions and analyses of the
two procedures are shown in the following sections.

In Fig. 2, (p;, P,...» P,) represent the skeletal joint trajectories. The input weight W,, and

its corresponding bias are fixed with random valuesW . For each trajectory pattern, we
use it to drive the reservoir. Update the reservoir states x using Function 1. After a
washout time, the reservoir states are collected in x. According the Definition 1 and
Proposition 1, the conceptor C are computed. Then, the singular values of the conceptor
are computed. With a descending order, the singular values are represented as a
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Figure 2. Action recognition framework based on Conceptors.

singular value vector. Using the clustering algorithms, the singular value vector are
encoded as a binary vector. Combined with other trajectory coders, the action sequence
are represented as a binary vector. At last, we use a modified softmax regression
algorithm to recognize actions.

3.3 Representation of skeleton trajectories

Limited by the conclusion (Palangi et al., 2014) that echo state networks have shown to
yield good performance on one dimensional sequences rather than high dimensional data.
For the trajectory of a skeletal joint P,, in the screen coordinates, it is denoted as

(Ppyi_1. Pyi). Based on the theory of conceptor, we compute the conceptor of the two

dimensional dynamic pattern. However, many conceptors fail to regenerate their
corresponding two dimensional patterns. For the trajectory of the skeletal joint, its
temporal length, movement velocity and range have great arbitrariness because of the
personal habits. Most of the current literatures are difficult to regenerate the action
skeleton joint trajectories.

Considering the excellent ability of echo state network on one dimensional data
processing, according to the dimension of the trajectory, each skeletal joint trajectory P,

can separated into two trajectories p,; ; and p,, . Then, we compute the conceptor of each

trajectory. The conceptor contains enough information to regenerate (Jaeger, 2014) the
trajectory of the action skeleton joint.

Using the singular value decomposition algorithm, we compute the singular values for
each conceptor. With a descending order, the singular values are represented as a
Singular Value Vector(SVV). In Fig. 3, the corresponding singular value vectors of those
trajectories are depicted in the left columns of the six figures (a)-(e). In this paper, the
coordinates of the skeletal joints are normalized to (-1, 1). So, the trajectories of each

dimension of the skeletal joints are one dimensional numerical sequences that varying
over time in the range of (-1,1).

After collecting the singular value vectors of each trajectory dimension, We cluster them
by using the k -means algorithms. Each collection is clustered intok groups. To encode a
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singular value vector for the same trajectory dimension, we calculate the metric
distances between the centers of the k groups and the SVV. The distance vector

d/=(d},dJ,..,d})is used to represent the singular value vector of the corresponding
trajectory that which is indexed by j . The whole skeletal action is encoded as
D=(d,d?,..,d") by combing those representations of the action joint trajectories. For

simplicity, we denote D =(d*,d?,..,d")as D=(d;,d,,..., ).
3.4 Action recognition

The human actions are dynamic patterns with uncertainty temporal length. As described
above, based on the Conceptor techniques, the skeletal actions are encoded as feature
vectors with definite dimension. For each skeletal action S; of the action training set, it is

represented as feature vectors D; . Then, we use a multi-class classifier softmax
regression to recognize actions.

For each test action representation D,, we use p(y = j|Di;9) to represent the estimated
probability for each action class category j. Assume the action class number of one
action data set ism, the hypothesis function h,(D;) of softmax regression is as follows,

p(y; =1D;; 0) exp(éy D;)
. =2D;; 0 ; D,
hg(Di) _ p(y| :| i ) _ . 1 exp(ajZ D|) , (5)
' exp(6;] D;) '
p(y; =m|D;; ) ,le " exp(onDy)

where 6,,6,,..,0, e R“"" are the parameters of the softmax regression model, and

m

Z:exp(é?jT D;)is the partition function. For simplicity, we use 0 to denote all of the model
j=1

parameters for softmax regression. So, 0is a parameter matrix with the dimension of
mx (k*n+1), and it can be denoted as follows,

_011_

0,
| (6)

HT

All of the model parameters are learned by minimizing the cost function of the softmax
regression algorithm. The cost function is shown as follows,

n_.m 0; D,
J(9)=‘% 22 M= J'}Iogmexp(—“) ’ .
i=L j=1 ZeXp(‘ng D;)
=1
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Figure 3. Some samples of the singular value vectors and their corresponding
trajectories. For the right columns of figures (a)-(e), the blue lines are the trajectories of
one dimension of skeletal joints, and the red lines are the regenerated trajectories that
produced by Conceptors. The curves of the left columns of figures (a)-(e) are the
computed singular value vectors of the right trajectories.

where 1{.}is an indicator function. With enough training action samples, we use L-BFGS
algorithm to solve the optimization problem.

4. EXPERIMENTS

To validate the effectiveness of the proposed algorithm, we perform multiple
experiments. First of all, we performed a regeneration experiment to demonstrate that,
the conceptor contains enough information to regenerate the trajectory of each action
skeleton joint. Then, we performed the action recognition experiment on two benchmark
skeleton action datasets, Chalearn Italian Gesture dataset and MSR Action3D dataset,
and the proposed algorithm shows good experiment results.

4.1 Effectiveness Of the SVV representation

As demonstrated in (Jaeger, 2014), with the participation of conceptors, a recurrent
neural network can regenerate different model patterns that which has previously been
driven with. Using the algorithms that provided by (Jaeger, 2014), we regenerate the
trajectories of each dimension of the action skeleton joints. In Fig. 3, some trajectories
of one dimension of the skeletal joints (blue) and the regenerated trajectories (red) are
depicted in the right columns of the six figures (a)-(e). We can find that the trajectories
are correctly regenerated. It demonstrates that the Conceptor has enough information to
regenerate the trajectory.

In Fig. 3, the trajectories of (b) and (e) have similar movement trends, the computed
singular value vectors are similar with each other. (a) is a example of a stationary
trajectory and (c) is a trajectory with slight movement, the singular value vectors are
different. (a) and (d) are almost stationary trajectories of skeletal joints. However, the
coordinate values of the two trajectories are different. The computed singular value
vectors are different with each other. From those figures, we can find that, to a certain
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Figure 4. The 20 actions of the Chalearn Italian Gesture Dataset.

extent, those singular value vectors depict the trajectories of each dimension of the
skeletal joints. For similar trajectories, the computed singular value vectors are similar
with each other. Instead, the Singular Value Vectors have a great difference.

4.2 Action recognition experiment on ChalLearn Italian Gesture Dataset

The Chalearn Italian Gesture Dataset (Escalera et al., 2013) is organized for the multi-
modal gesture recognition challenge 2013. It is a multi-modal data set recorded by the
Kinect camera. This dataset includes RGB video streams, depth images, user masks,
skeletal data and audio data. In this paper, we only focus on the skeletal data. Each
skeleton includes 20 joints. We perform experiments on the pixel positions of the
skeletal joints. This dataset contains 20 Italian cultural/anthropological signs (Fig. 4).
The names of those gestures are as follows, (1) vattene, (2) vieniqui, (3) perfetto, (4)
furbo, (5) cheduepalle, (6) chevuoi, (7) daccordo, (8) seipazzo, (9) combinato, (10)
freganiente, (11) ok, (12) cosatifarei, (13) basta, (14) prendere, (15) noncenepiu, (16)
fame, (17) tantotempo, (18) buonissimo, (19) messidaccordo, (20) sonostufo.

To compare with other skeletal data based approaches, similar as (Wu and Shao, 2014),
we perform experiments on a subset of this dataset. This set includes 393 sections. Each
section contains between 8 and 20 gesture instances. In all, there are 7754 gestures for
the experiments. Following the experiment setup of other approaches (Wu and Shao,
2014), we use the gestures of 350 sections to train the parameters, and the rest 43
sections are used for testing. With the above experiment setup, we performed the
human action recognition experiment on the ChalLearn Italian Gesture dataset. While
training the parameters, we use some copies of the training action sections with a little
change of the action skeleton joint trajectories.
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Tabla 1 Average accuracy comparison on Chalearn Italian Gesture Dataset.

Method Accuracy
GMM+HMM [Murphy, 2012] 0.408
EigenJionts [Yang and Tian, 2012] 0.593
NN+DTW [Wu et al., 2013] 0.599
DBN+HMM [Wu and Shao, 2014] 0.628
Our Method 0.651

Tabla 2 Average accuracy comparison on MSR Action3D Dataset.

Method Accuracy
Sequence of Most Information Joints [Ofli et al., 2014] 0.29
Recurrent Neural Network [Martens and Sutskever, 2011] 0.425
Dynamic Temporal Warping [Muller and Roder, 2006] 0.54
Hidden Markov Model [Lv and Nevatia, 2006] 0.63
Multiple Instance Learning [Ellis et al., 2013] 0.657
GMM+HMM [Murphy, 2012] 0.704
EigenJoints +DBNN [Yang and Tian,2012] 0.72
Structured Streaming Skeletons [Zhao at el., 2013] 0.817
DBN + HMM [Wu and Shao, 2014] 0.82
Our Method 0.834

The action recognition result is shown in Table 1, and we compared the proposed action
recognition algorithm with the state-of-the-art approaches that which are based on
action skeleton information. The compared algorithms include the deep learning methods
and the traditional machine learning approaches. Such as the deep learning
algorithm(Wu and Shao, 2014) which uses deep belief neural network to process action
skeleton information, and as the traditional machine learning algorithms (Murphy 2012;
Wu et al., 2013; Yang and Tian 2012) which uses hidden markov model, naive-bayes-
nearest-neighbor, or dynamic time warping to recognize actions. The proposed algorithm
is different with them because that it import conceptors to represent action skeleton
joint trajectories. Above all, the usage of conceptor improved the action recognition
performance. From Table 1, it can be seen that the proposed algorithm get a better
recognition performance.

4.3 Action recognition experiment on MSR Action3D Dataset

The MSR Action3D Dataset (Wang et al., 2012) is an action dataset that recorded by a
depth sensor. The depth sensor is similar as the Kinect device. There are 20 action
categories performed by 10 subjects in this dataset. Each action is performed 2 or 3
times by each subject. In this experiment, we only focus on the skeletal data of this
dataset. There are 557 skeletal action sequences. Each skeleton has 20 joint positions.
The joint position contains four real numbers: u,v,d,c. (u,v) are the screen coordinates,

d is the depth value, and c is the confidence score. In this paper, we perform
experiments on the(u,v,d) coordinates of the skeletal joints. The normalization of the

coordinates of the skeletal joints is the same as that which is introduced by (Wu and
Shao, 2014).

This is a challenging dataset while some of the action skeleton information is very noisy.
In this dataset, we use the cross-subject experiment setup to perform the action
recognition experiments. The skeleton action of five subjects are used to train the
parameters, and the actions of the other five subjects are used for testing. The average
action recognition result is shown in Table 2, and we compared our results with some of
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the state-of-the-art action recognition approaches. From this table, we can find that, the
proposed algorithm get a better performance.

055
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Figure 5. The average recognition accuracy of our method with different values of k
which are used to generate binary vector for softmax.

4.4 Parameric analysis

In our proposed algorithm, the singular value vectors (SVVs) of the computed conceptor
for the trajectory of of each dimension of the skeleton joint are encoded as a binary
vector by using the clustering algorithms. When we generating these binary codes
(vectors) for the SVVs, the variable k of the k-means clustering algorithm determines
the dimension of the code. The larger k is, the more categories are classified. That is to
say, it determines the dimension of input vector of the softmax regression. k becomes
an indicator of the SVVs and the results of the final classification.

In order to discover the usefulness of the input binary code, our algorithm is tested with
different values of k of the k-means clustering algorithm changing from 2-20 with 2 as
the interval. The result is shown in Fig. 5. In Fig. 5, we compute the average accuracy of
the action recognition based on two bench mark action datasets. As can be seen, too
small or too large value of k may both lead to poor performance. Thus, a proper choice
of k is important for good performance of our proposed algorithm. Experiments found
that the value of k between 6-12 is a good choice.

5. DISCUSSION AND CONCLUSION

By importing conceptor, we proposed a novel action recognition approach based on RNN.
As some of the current action recognition algorithms, we use the action skeleton
information to process the actions. Compared with the RGB action videos or other
formats of human actions, action skeleton is more precise, and it is very easy to avoid
the occlusion problem that caused by the clothes, human body or the other things.
However, limited by the action skeleton capture device, some captured skeleton actions
are very noisy. So, it is still a challenging problem to recognize actions based on the
skeleton information.

Currently, most of the action recognition algorithms through extracting spatial temporal
features or learning the high level codes of actions to achieve recognize. The proposed
algorithm is different with them. This algorithm computes a conceptor for each
dimension of the action skeleton joint trajectory. The conceptors are not only a
representation of the action skeleton joint trajectories. The conceptors contain enough
information to regenerate the joint trajectories.It is also a mechanism of neurodynamical
organization. The importation of the conceptor makes it is different with other feature
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extracting or learning algorithms. The experiment results on two bench mark action
datasets confirm the effectiveness of the proposed algorithm.
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