Hybrid Generalized Function Projective Delay Synchronization in Uncertain Complex Dynamical Networks with Time Delay and Disturbance via Hybrid Feedback Control

Yingying Sun

Abstract


In this paper, the hybrid generalized function projective delay synchronization in uncertain complex dynamical networks with disturbance and time delay are investigated. When the parameters and the interior of the uncertain complex network exist disturbance, a hybrid feedback controller is designed to realize hybrid generalized function projective delay synchronization and parameters identification for uncertain complex dynamical networks. This paper investigates synchronization in complex dynamical networks with constant time delay and synchronization in complex dynamical networks with time-varying delay. Numerical simulations are provided to show the effectiveness of the theoretical analysis.

Full Text:

PDF

References


Dong Y., Xian J.G., Han D. (2013). New condition for synchronization in complex

networks with multiple time-varying delays, Commun Nonlinear SciNumerSimulat,

(9), 2581-2588.

Du H.Y., Shi P., Lü N. (2013). Function projective synchronization in complex dynamical

networks with delay via hybrid feedback control, Nonlinear Analysis: Real World

Applications, 14(2), 1182-1190.

Jia Z., Fu X.C., Deng G.M., Li K.Z. (2013). Group synchronization in complex dynamical

networks with different types of oscillators and adaptive coupling schemes,

Communications in nonlinear science and numerical simulation, 18(10), 2752-2760.

Ji D.H., Jeong S.C., Park J.H., Lee S.M., Won S.C. (2012). Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling, Applied Mathematics and Computation, 218(9), 4872-4880.

Li X. (2006). Phase synchronization in complex networks with decayed long-range interactions, Physica D, 223(2), 242–247.

Liu H., Lu J.A., Lü J., Hill D.J. (2009). Structure identification of uncertain general complex dynamical networks with time delay, Atomatica, 45(8), 1799-1807.

Li C.G., Chen G. (2004). Synchronization in general complex dynamical networks with coupling delays, Physica A, 343(S3-4), 263-278.

Lee T.H., Wu Z.G., Park Ju. H. (2012). Synchronization of a complex dynamical network with coupling time-varying delays via sample-data control, Applied Mathematics and Computation, 219(3), 1354-1366.

Park J.H., Kwon O.M. (2009). Synchronization of neural networks of neutral type with stochastic perturbation, Mod. Phys. Lett. B, 23(14), 1743-1751.

Park J.H. (2009). Synchronization of cellular neural networks of neural type via dynamic feedback controller, Chaos Solitons Fractals, 42(3), 1299-1340.

Qian Y., Zhao Y.R., Liu F., Huang X.D., Zhang Z.Y., Mi Y.Y. (2013). Effects of time delay and coupling strength on synchronization transitions in excitable homogeneous random network, Communications in nonlinear science and numerical simulation, 18(12), 3509-3516.

Wang G., Cao J., Ju J. (2010). Outer synchronization between two nonidentical networks with circumstance noise, Physica A, 389(7), 1480-1488.

Xiao J., Yang Y.H., Long J.S. (2013). Synchronization of complex networks with derivative coupling via adaptive control. International Journal of Systems Science, 44(12), 2183-2189.

Zhou J., Chen T. (2006). Synchronization in general complex delayed dynamical networks, IEEE Transactions on Circuits and Systems, I 53(3), 733-744.

Zhao J.C., Lu J.A., Ding C. (2008). Comparison of phase synchronizability of several regular networks for non-phase-coherent attractors, Chin. Phys. Lett., 25(2), 417–420.


Refbacks

  • There are currently no refbacks.


Revista de la Facultad de Ingeniería,

ISSN: 2443-4477; ISSN-L:0798-4065

Edif. del Decanato de la Facultad de Ingeniería,

3º piso, Ciudad Universitaria,

Apartado 50.361, Caracas 1050-A,

Venezuela.

© Universidad Central de Venezuela