An Improved Genetic Algorithm for Parameter Calibration of Xin’anjiang Model
Abstract
Based on the analysis of Xin’anjiang model parameters, a multi-objective parameter optimization model is established. An improved genetic algorithm is proposed to solve inferior local searchability, premature convergence and slow convergence speed which are the defects of genetic algorithm. The suggested algorithm narrows the range of parameter constraints and at the same time makes use of direct comparison-proportional method and niche operator to achieve step-by-step parameter optimization. The improved genetic algorithm is successfully applied to parameter calibration of the Xin’anjiang model for the Zhuganhe water shed. The better parameter results obtained from the algorithm meet the accuracy requirements in calibration and verification. The calculated results and a comparison with Traditional Genetic Algorithm and SCE-UA algorithm show that the proposed IGA has not only higher rate of convergence, but also better optimization results. It provides an efficient and reliable optimization algorithm for the calibration of Xin’anjiang model parameter.
Full Text:
PDFReferences
Casano G., Piva S. (2015). Parametric analysis of a pcm energy storage system. International Journal of Heat and Technology, 33(4), 61-68
Dai J.N., Li Z.J., Huang P.N., Huang Y.C. (2011). Uncertainty analysis of Xin'anjiang model parameters. Journal of Hohai University (Natural Sciences), 39(6), 618-622.
Gao F., Feng M.Q., Bai J.Z., Dong X.Q., Chen Y. (2016). Study on Algal Bloom Warning of Wuxing Lake Based on Particle Swarm Optimization-BP Neural Network. Oxidation communications, 39(1A), 1205-1214.
Li D.L., Cheng X.Y., Yang H., Huang P. (2013). Study on artificial intelligence optimization algorithms for auto-calibration of hydrological models. Journal of Hydraulic Engineering, 44(S1), 95-101.
Li M.X., Liao R.Q., Li J.L., Luo W., Ke W.Q. (2015). Parameter sensitivity analysis of gas-lift well unloading processes. International journal of heat and technology, 33(4), 237-245
Li M.Q. (2002). Basic theory and application of genetic algorithm, Beijing: Science Press.
Li N., Wang X.S., Mei Y.D., Zhao W. (2007). An improved genetic algorithm for parameter optimization of hydrology model. Engineering Journal of Wuhan University, 40(5), 7-10.
Li Z. J., Zhang H., Yao C., Kan G. (2013). Application of coupling global optimization of single-objective algorithm with multi-objective algorithm to calibration of Xinanjiang. Journal of Hydroelectric Engineering, 32(5), 6-12.
Li Z.J. (2010). Modern hydrological modeling and forecasting technology, Nanjing: Hohai University Press.
Lin D., Li M.Q., Kou J.S. (2001). A GA-Based Method for Solving Constrained Optimization Problems, 12(4), 628-632.
Liu J., Dong X.H., Li Y.H. (2011). Uncertainty Analysis of Monthly Water Balance Model Based on MOMM-GLUE Algorithm. Water Resources and Power, 29(4), 25-27.
Liu S.N., Gan H., Wei G.X. (2010). Application of PSO algorithm to calibrate the Xin’anjiang Hydrological Model. Journal of Hydraulic Engineering, 41(5), 537-544.
Tan B.Q. (1996), Comparative Study on Optimization Methods for Calibrating the Hydrological Models. Journal of China Hydrology, 5, 8-14.
Zhang G., Xie J.C., Luo J.G. (2011). Parameter calibration of Xin’anjiang rainfall-runoff model by immune clonal selection algorithm. Journal of Hydroelectric Engineering, 30(4), 6-13.
Zhao R.J. (1984). Watershed hydrological simulation, Beijing: Water Resources and Electric Power Press.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela