Research on Key Technologies of Diamond Wire Saw Machining in Hard-brittle Material with Ultrasonic Vibration

Xiaoye Wang

Abstract


In the paper, the new process of rotating electroplated diamond wire saw with ultrasonic vibration is used for cutting and machining the typical hard-brittle materials like glass and zirconia ceramics to analyze its kinematics, dynamics and other basic theories, moreover, the impact rules of wire saw rotating frequency, lateral pressure, abrasive grain and other process parameters on the machining sawing power and surface roughness are researched based on the experiment. The comparison between normal sawing and ultrasonic sawing in glass indicates that: under the same condition, the tangent-saw force of ultrasonic saving is lower than that of normal sawing by 20%~30%, and the normal sawing force is decreased when the lateral pressure of workpiece is small (less than 5N) and increased when the lateral pressure is large (5N or above); when the wire saw rotating frequency is 150rpm, the lateral pressure is 2N and the abrasive grain is 280#, the machining surface will be given with the best quality with surface roughness of Ra=0.3-0.4μm. Therefore, compared to the surface roughness of Ra=0.8-1.0μm of normal sawing under the same condition, the ultrasonic sawing is superior to the normal sawing by 1-2 levels.


Full Text:

PDF

References


Clark W.I., Shih A.J., Hardin C.W., Lemaster R.L., Mcspadden S.B. (2003). Fixed abrasive diamond wire machining—part i: process monitoring and wire tension force. International Journal of Machine Tools & Manufacture, 43(5), 523-532.

Clark W.I., Shih A.J., Lemaster R.L., Mcspadden S.B. (2003). Fixed abrasive diamond wire machining—part ii: experiment design and results. International Journal of Machine Tools & Manufacture, 43(5), 533-542.

Craig W. Hardin, J. Q., Albert J. (2003). Fixed abrasive diamond wire saw slicing of single-crystal silicon carbide wafers. American Society of Mechanical Engineers, 19(19), 653-660.

Drăghici G. (1999). Ingineria integrată a produselor. Editura Eurobit, ISBN 973-96065-7-1, Timişoara

Fang F.Z., Liu X. D., Lee L.C. (2003). Micro-machining of optical glasses - a review of diamond-cutting glasses. Sadhana, 28(5), 945-955.

Gheisari N. (2013). Archives of mining science- prediction of performance of diamond wire saw with respect to texture. Digital Library & Archives of the Virginia Tech University Libraries.

Goel S., Luo X., Reuben R.L., Rashid W.B. (2011). Replacing diamond cutting tools with cbn for efficient nanometric cutting of silicon. Materials Letters, 68(1), 507-509.

Horita Z., Xiao B., FuY.C., Su H.H., Xu J.H., Xu H.J. (2006). Machining performance of brazed diamond wire saw with optimum grain distribution. Key Engineering Materials, 304-305, 43-47.

Hwang K. S., Yang T.H., Hu S.C. (2005). Diamond cutting tools with a ni3al matrix processed by reaction pseudo-hipping. Metallurgical & Materials Transactions A, 36(10), 2801-2806.

Iyer S. (2013). Saw and sawing element with diamond coating and method for producing the same. EP, EP2586557.

Jang S.H., Shimizu Y., Ito S., Gao W. (2014). A micro optical probe for edge contour evaluation of diamond cutting tools. Journal of Sensors & Sensor Systems, 3(1), 69-76.

Jia P., Zhou M. (2012). Tool wear and its effect on surface roughness in diamond cutting of glass soda-lime. Chinese Journal of Mechanical Engineering, 25(6), 1224-1230.

Jimbo H., Kamata S., Miura K., Masubuchi T., Ichikawa M., Ikeda Y. (2011). En bloc temporal bone resection using a diamond threadwire saw for malignant tumors. Journal of Neurosurgery, 114(5), 1386-9.

Kamiya O., Miyano Y., Takahashi M., Kawase H., Sekiguchi K., Oga Y.(2010). Development of new micro saw wire bonded with diamond grains using metal solder. International Journal of the Society of Materials Engineering for Resources, 17(2), 182-185.

Lee K.H., Lee K.H. (2011). A study on the surface characteristics of diamond wire-sawn silicon wafer for photovoltaic application. Journal of the Korean Crystal Growth & Crystal Technology, 21(6), 225-229.

Li Z.Q., Sun T., Li P., Zha X. S. (2009). Measuring the nose roundness of diamond cutting tools based on atomic force microscopy. Journal of Vacuum Science & Technology B Microelectronics & Nanometer Structures, 27(27), 1394-1398.

Molfino R.M., Zoppi M. (2012). A robotic system for underwater eco-sustainable wire-cutting. Automation in Construction, 24(24), 213-223.

Moser H.C. (2004). Trends in EDM, available at: http://www.mmsonline.com/articles/020001.html Accessed: 2004-09-02.

Oliveira H.C.P.D., Cabral S.C., Guimarães R.S., Bobrovnitchii G.S., Filgueira M. (2009). Processing and characterization of a cobalt based alloy for use in diamond cutting tools. Materialwissenschaft Und Werkstofftechnik, 40(12), 907–909.

Özkan E., Sarıışık G., Ceylan S. (2014). Application and productivity analysis of new channel opening method in natural stone quarries with diamond wire cutting machine. Arabian Journal of Geosciences, 8(2), 1089-1098.

Pershin G.D., Ulyakov M.S. (2014). Analysis of the effect of wire saw operation mode on stone cutting cost. Journal of Mining Science, 50(2), 310-318.

Prenzel T., Mehner A., Lucca D.A., Qi Y. (2013). Chemical and mechanical properties of silica hybrid films from naoh catalyzed sols for micromachining with diamond cutting tools. Thin Solid Films, 531(6), 208–216.

Saito A., Takahashi M., Miyano Y., Kamiya O. (2014). Influence of the cutting condition on cutting performance with twisted fixed abrasive diamond saw wire (adw). International Journal of the Society of Materials Engineering for Resources, 20(2), 181-185.

Shimizu S., Miyazaki T., Suzuki S., Yamada M., Utsuki S., Oka H. (2008). Supratentorial craniotomy using a threadwire saw. technical note. Neurologia medico-chirurgica, 48(4), 191-4; discussion 194.

Tantussi G., Lanzetta M., Gentile S., Depperu G. (2008). Diamond wire cutting: failure modes, risks for safety and workers’ protection. Second International Congress Dimension Stones XXI Century Challenges.

Tso P.L., Chen Y.T., Chuang J.C. (2012). Slicing alumina with active braze coating diamond wire. International Journal of Abrasive Technology, 5(4), 341-353.

Uegami K., Tamamura K., Jang K.K. (1988). Lapping and frictional properties of diamond, and characteristics of diamond cutting tool. Journal of Mechanical Working Technology, 17(3), 147-155.

Viterbo E., Biglieri E. (1996). Computing the voronoi cell of a lattice: the diamond-cutting algorithm. IEEE Transactions on Information Theory, 42(1), 161-171.

Yao C., Peng W., Liu F. (2013). Formulation and implementation of energy efficient ultraviolet curing for photosensitive resin-bound diamond wire saws. Mathematical Problems in Engineering, 2013(b7), 707-724.

Yao C.Y., Wang J.S., Peng W. (2011). A spraying method for development of diamond wire saw. Solid State Phenomena, 175, 249-253.

Zong W.J., Cheng K., Li D., Sun T., Liang Y.C. (2007). The ultimate sharpness of single-crystal diamond cutting tools - part i: theoretical analyses and predictions. International Journal of Machine Tools & Manufacture, 47(5), 852–863.

Zong W.J., Li D., Sun T., Cheng K. (2006). Contact accuracy and orientations affecting the lapped tool sharpness of diamond cutting tools by mechanical lapping. Diamond & Related Materials, 15(9), 1424-1433.

Zong W.J., Li D., Sun T., Cheng K., Liang Y.C. (2007). The ultimate sharpness of single-crystal diamond cutting tools—part ii: a novel efficient lapping process. International Journal of Machine Tools & Manufacture, 47(5), 864-871.

Zong W.J., Li Z.Q., Sun T., Cheng K., Li D., Dong S. (2010). The basic issues in design and fabrication of diamond-cutting tools for ultra-precision and nanometric machining. International Journal of Machine Tools & Manufacture, 50(4), 411-419.

Zong W.J., Li Z.Q., Sun T., Li D., Cheng K. (2010). Analysis for the wear resistance anisotropy of diamond cutting tools in theory and experiment. Journal of Materials Processing Technology, 210(6–7), 858-867.

Zong W.J., Sun T., Li D., Cheng K. (2009). Design criterion for crystal orientation of diamond cutting tool. Diamond & Related Materials, 18(4), 642-650.

Zong W.J., Sun T., Li D., LiZ.Q., Cheng K. (2008). Nano-precision diamond cutting tools achieved by mechanical lapping versus thermo-mechanical lapping. Diamond & Related Materials, 17(6), 954-961.


Refbacks

  • There are currently no refbacks.


Revista de la Facultad de Ingeniería,

ISSN: 2443-4477; ISSN-L:0798-4065

Edif. del Decanato de la Facultad de Ingeniería,

3º piso, Ciudad Universitaria,

Apartado 50.361, Caracas 1050-A,

Venezuela.

© Universidad Central de Venezuela