Interval state estimation for discrete time systems with actuator saturation
Abstract
It is very difficult to apply traditional observer design and analysis methods directly to the interval observer. What is worse, the existing design and analysis tools for interval observers are very limited, and most of them are targeted at linear systems. Nevertheless, as most of actual control systems are non-linear in nature, there is an urgent need to develop an interval observer design theory targeted to non-linear systems. In this paper, the author puts forward an interval observer design method for discrete systems subject to actuator saturation so as to estimate the state interval of the systems even if there is an unknown non-linear function.
Full Text:
PDFReferences
Avilés J., Moreno J. (2014). Preserving order observers for nonlinear systems, International Journal of Robust and Nonlinear Control, 24, 2153-2178.
Bernard O., Gouzé J. (2004). Closed loop observers bundle for uncertain biotechnological models, Journal of Process Control, 14(7), 765-774.
Efimov D., Fridman L., Raïssi T., Zolghadri A., Seydou R. (2012). Interval estimation for LPV systems applying high order sliding mode techniques, Automatica, 48, 2365-2371.
Efimov D., Perruquetti W., Raissi T.,Zolghadri A.(2013). Interval observers for Time-Varying Discrete-Time Systems. IEEE Transactions on Automatic Control, 32(12), 18-3224.
Efimov D., Raïssi T.S. Chebotarev, Zolghadri A.(2013). Interval state observer for nonlinear time varying systems, Automatica, 49(1), 200-205.
Gouzé J., Rapaport A., Hadj-Sadok Z. (2000). Interval observers for uncertain biological systems, Ecological Modelling, 133, 45-56.
Mazenc F., Bernard O. (2010). Asymptotically stable interval observers for planar systems with complex poles, IEEE Transactions on Automatic Control, 55(2), 523-526.
Mazenc F., Bernard O. (2011). Interval observers for linear time-invariant systems with disturbances, Automatica, 47(1), 140-147.
Mazenc F., Dinh T. (2014). Construction of interval observers for continuous-time systems with discrete measurements, Automatica, 50, 2555-2560.
Mazenc F., Niculescu S.I. O. (2012). Bernard, Exponentially stable interval observers for linear systems with delay, SIAM Journal on Control and Optimization, 50(1), 286-305.
Moisan M., Bernard O. (2010). Robust interval observers for global Lipschitz uncertain chaotic systems, Systems & Control Letters, 59, 687-694.
Moisan M., Bernard O., Gouzé J. (2009).Near optimal interval observers bundle for uncertain bioreactors, Automatica, 45(1), 291-295.
Raïssi T., Efimov D., Zolghadri A. (2012). Interval state estimation for a class of nonlinear systems, IEEE Transactions on Automatic Control, 57(1),260–265.
Raïssi T., Videau G., Zolghadri A. (2010). Interval observers design for consistency checks of nonlinear continuous-time systems, Automatica, 46(3), 518–527.
Thabet R., Raïssi T., Combastel C., Efimov D., Zolghadri A. (2014). An effective method to interval observer design for time-varying systems, Automatica, 50, 2677-2684.
Wang Y., Bevly D. M., Rajamani R. (2015). Interval observer design for LPV systems with parametric uncertainty, Automatica, 60, 79-85.
Zhang Z., Xu S. (2015). Observer design for uncertain nonlinear systems with unmodeled dynamics, Automatica, 51, 80-84, 2015.
Zheng G., Efimov D., Perruquetti W. (2016). Design of interval observer for a class of uncertain unobservable nonlinear systems, Automatica, 63, 167-174.
Zhou D.H., Liu Y., He X. (2013). Review on fault diagnosis techniques for closed-loop systems. Acta Automatica Sinica, 39(11), 1933-1943.
Zhu F. (2012). State estimation and unknown input reconstruction via both reduced-order and high order sliding model observers, Journal of Process Control, 22(1), 296-302.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela