Modeling and Step-size Prediction of A Galfenol Driven Ultra-Precision Linear Motor

Ran Zhao

Abstract


A new mathematical model of a Galfenol driven linear motor was presented in this paper. The given motor operated at slip-stick mode. Its dynamic model was analyzed, and motion equations were given. Analytic solutions of the step-size then were obtained by solving the motion equations. At last, simulation blocks and experimental system were established, and the simulation and experimental results were compared testify the model and theoretical calculations. The results illustrated that the simulation model and step-size expression have high prediction accuracy.


Full Text:

PDF

References


Edeler C., Meyer I., Fatikow S. (2011). Modeling of stick-slip micro-drives, Journal of Micro-Nano Mechanic, 6, 65-87.

Fung R.F., Han C.F., Ha J.L. (2008).Dynamic responses of the impact drive mechanism modeled by the distributed parameter system, Applied Mathematical Modeling, 32, 1734-1743.

Furutani K., Higuchi T., Yamagata Y., Mohri N. (1998). Effect of lubrication on impact drive mechanism, Precision Engineering, 1998, 22, 78-86.

Ha J.L., Fung R.F., Han C.F. (2005).Optimization of an impact drive mechanism based on real-coded genetic algorithm, Sensors and Actuators: A, 121, 488-493.

Hattori S., Hara M., Nabae H., Hwang D., Higuchi T. (2014). Design of an impact drive actuator using a shape memory alloy wire, Sensors and Actuators A, 219, 47-57

Hunstig M., Hemsel T., Sextro W. (2013). Stick-slip and slip-slip operation of of piezoelectric inertia drives. Part I: Ideal excitation, Sensors and Actuators: A, 200, 90-100.

Jiles D. (1998). Introduction to magnetism and magnetic materials. Second Edition. Boca Raton, CRC Press, 65-75.

Kang C.Y., Yoo K.H., K. H.P., Kim H.J., Ko T.K., Yoon S.J. (2006).Analysis of driving mechanism for tiny piezoelectric linear motor, Journal of Electroceramics, 17, 609-612.

Kim W., Sadighi A. (2010).A Novel Low-Power Linear Magnetostrictive Actuator With Local Three-Phase Excitation, IEEE TRANSACTIONS ON MECHATRONICS, 15(2), 299-307.

Liu Y.F., Li J., Hu X.H., Zhang Z.M., Cheng L., Lin Y., Zhang W.J. (2015). Modeling and control of piezoelectric inertia-friction actuators: review and future research directions, Mechanical Sciences, 6, 95-107.

Lucian P. D., Alexandu M. M., Mihaela M., Florentina B., Popa M., Corina A.B. (2016). A new type of linear magnetostrictive motor, Electrical Engineering, 1-13.

Sang W.L., Ahn K.G., Ni J. (2007). Development of a piezoelectric multi-axis stage based on stick-and-clamping actuation technology, Smart materials and structures, 16, 2354-2367.

Shen Y., Yin X.C. (2009). Dynamic substructure model for multiple impact responses of micro/nano piezoelectric precision drive system, Science in China Series E: Technological Sciences, 52(3), 622-633.

Ten J.J., Jeng S.L., Chieng W.H. (2003). Modeling of piezoelectric actuator for compensation and controller design, Precision Engineering, 27, 70-86.

Xu W.B., Yang B.T., Guang M., Lv Y.M. (2012). Dynamic Modeling and Simulation to Precision Positioning Magnetostrictive Inchworm Linear Motor, Journal of Shanghai Jiaotong University, 46(3), 2846-2850.

Yang B.T., Guang M., Feng Z.Q., Yang D.H. (2011).Giant magnetostrictive clamping mechanism for heavy-load and precise positioning linear inchworm motors. Mechatronics, 21, 92-99

Yang C.F., Jeng S.L., Chieng W.H. (2011). Motion behavior of triangular waveform excitation input in an operating impact drive mechanism. Sensors and Actuators: A, 2011, 166, 66-77.

Zhang Z.G., Ueno T., Higuchi T. (2010). Magnetostrictive Actuating Device Utilizing Impact Forces Coupled with Friction Forces, IEEE International Symposium on Industrial Electronics, 1, 464-469.

Zhao R., Lu Q.G. (2016). Modeling and Simulation of Magnetostrictive Impact Drive Mechanism, Journal of System Simulation, 28(7), 1547-1551.

Zhao X.P., Dankowicz H., Reddy C.K., Nayfe A.H. (2004). Modeling and simulation methodology for impact microactuators, Journal of micromechanics and microengineering, 14, 775-784.


Refbacks

  • There are currently no refbacks.


Revista de la Facultad de Ingeniería,

ISSN: 2443-4477; ISSN-L:0798-4065

Edif. del Decanato de la Facultad de Ingeniería,

3º piso, Ciudad Universitaria,

Apartado 50.361, Caracas 1050-A,

Venezuela.

© Universidad Central de Venezuela