Analysis of contact properties for the asperity based on micro manufacturing process
Abstract
For the micro manufacturing, friction and wear are actually the sliding compression process of many asperities which are distributed in two contact surfaces. A three-dimensional contact model was established between the tool and the workpiece exhibiting fractal behavior, the contact area was discussed using the finite element analysis. The numerical results showed that the real contact area was mainly concentrated in the higher individual asperities, when the load is low, the real contact area with the load into an approximate linear relationship, with the increasing load, the real contact area slowly increasing since the effect of the interaction of asperity; the contact interface adhesion has significant effect on micro-scale machining process, the interfacial shear strength is lesser, more the difference of the Z direction load less than zero, the asperity is not easy to break. The micro contact model between the tool and the workpiece will lay a foundation to further research on the substance of the process of micro manufacturing.
Full Text:
PDFReferences
Adbel M., Julio C. (2013). Sosa and Victor H. García. An analysis of the interaction between hardware and communication protocol on geolocation devices.Technical Journal of the Faculty of Engineering,36(3),1-9.
Archard J.F. (1957). Elastic deformation and the laws of friction.Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 243(1233), 190–205.
Bowden F.P., Tabor D., Palmer F. (1950). The Friction and Lubrication of Solids. OxfordUniversity Press, 21(10), 1-8.Doi:10.1119/1.1933017.
Bush A.W., Gibson R.D., Thomas T.R. (1975). The elastic contact of a rough surface. Wear, 35(1), 87–111.Doi:10.1016/0043-1648(75)90145-3.
Goerke D., WillnerK.(2008).Normal contact of fractal surfaces—Experimentaland numerical investigations. Wear, 264(7-8), 589–598. Doi:10.1016/j.wear.2007.05.004.
Greenwood J.A., Williamson J.B.P.,(1966). Contact of nominally flat surfaces.Proceedings of the Royal Society A Mathematical Physical & Engineering Sciences, 295(295), 300–319.Doi:10.1098/rspa.1966.0242.
Greenwood J.A., Tripp J.H.(1967). The elastic contact of rough spheres. Journal of Applied Mechanics, 34(1), 153-159.DOI:10.1115/1.3607616.
Hisakado T. (1974).Effect of surface roughness on contact between solid surfaces. Wear,28(2), 217–234.Doi:10.1016/0043-1648(74)90163-X.
Li H.X., Li B., Bai X. (2015).Three Dimensional Modeling Of Gas-solid Coupled Free And Porous Flow In A Filtration Process. International Journal of Heat and Technology, 33(4), 101-106.Doi:10.18280/ijht.330413.
Li N., Chen L.Q., Zhang J., Hu A.L., He X.Y., Liu Q. (2015).Mechanical properties analysis of sealing disc for straight plate pigduring pigging.Technical Journal of the Faculty of Engineering, 38(3), 12-19.
Li Y., Li Y., Yang M., Yuan Q., Cui F. (2015). Analyzing the Thermal Mechanical Coupling of 40Cr Cold Roll-beating Forming Process based on the Johnson-cook Dynamic Constitutive Equation. International Journal of Heat and Technology, 33(3), 51-58.Doi: 10.18280/ijht.330307.
MajumdarA., BhushanB.(1990).Role of fractal geometry in roughness characterization and contact mechanics of surfaces. Journal of Tribology, 112(2), 205-216.Doi:10.1115/1.2920243.
MandelbrotB., Ness J. (1968). Fractional Brownian motions, fractional noises and applications. SIAM Review, 10(4): 422-437.Doi:10.1137/1010093.
McCool J.I. (1986). Predicting microfracture in ceramics via a microcontact model.Journal of Tribology, 108(3), 380–386.DOI:10.1115/1.3261209.
Mulvihill D.M., KartalM.E., Nowell D., HillsD.A. (2011).An elastic plastic asperity interaction model, for sliding friction. Tribology International, 44(12), 1679-1694.Doi:10.1016/j.triboint.2011.06.018.
Sahoo P., Ghosh N. (2007). Finite element contact analysis of fractal surfaces. Journal of Physics D Applied Physics, 40(14), 390-3. Doi:10.1088/0022-3727/40/14/021.
Shi Y.G. (2016). Mechanical System Design of a Trimaran USV. Revista de la Facultad de Ingeniería, 31(5), 36-48.Doi:10.21311/002.31.5.05.
Yang S.Z., WuB. (2003). Trends in The Development of Advanced Manufacturing Technology. Journal of Mechanical Engineering, 39(10), 73-78.Doi:10.3901/JME.2003.10.073.
Yin X.,Komvopoulos K. (2010). An adhesive wear model of fractal surfaces in normal contact. International Journal of Solids and Structures, 47(7-8), 912–921. Doi: 10.1016/j.ijsolstr.2009.12.003.
YinX., KomvopoulosK.(2012). A slip-line plasticity analysis of abrasive wear of a smooth and soft surface sliding against a rough (fractal) and hard surface. International Journal of Solids and Structures, 49(1), 121-131.Doi:10.1016/j.ijsolstr.2011.09.016.
Zahouani H., Vargiolu R.,LoubetJ.L. (1998). Fractal models of surface topography and contact mechanics. Mathematical and Computer Modelling, 28(4-8), 517-534.Doi:10.1016/S0895-7177(98)00139-3.
ZhaoY.W., MaiettaD.M., ChangL.(2000).An Asperity Microcontact ModelIncorporating the TransitionFrom Elastic Deformation toFully Plastic Flow. Journal of Tribology, 122(1), 86-93.Doi:10.1115/1.555332.
Zivic F., BabicM.,Cvijovic-Alagic I., Mitrovic S., Vencl A. (2011).Wear Behaviour of Ti6Al4V Alloy against Al2O3 under Linear Reciprocating Sliding. J. Balkan Tibological Association, 17(1), 27-36.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela