An Improved Particle Swarm Optimization Algorithm for Fractional Order PID Parameter Tuning
Abstract
An improved particle swarm optimization algorithm is proposed to tune the parameters of fractional order PID controller in this paper. The fitness function is set based on the performance index of the system in time domain. In the process of iteration, partial particles are re-initialized when they evolved slower than the others. Meanwhile, the adaptive inertia weight value is adopted to get the optimal solution by globally searching. Finally, applying the proposed fractional PID controller into a typical servo control system, the simulation results indicate that the parameter tuning method based on improved particle swarm optimization has better convergence speed. The control system with fractional PID algorithm has better performance-short adjusting time, fast rising velocity, strong anti-jamming capability, at the same time, this fractional PID controller could be better than standard particle swarm optimization algorithm and genetic algorithm.
Full Text:
PDFReferences
Chen Y.Q., Bhaskaran T., Xue D. (2008). Practical tuning rule development for fractional order proportional and integral controllers. Journal of Computational and Nonlinear Dynamics, 3(2), 021403.(DOI:10.1115/1.2833934)
Caponetto R., Dongola G., Pappalardo F., Tomasello V.(2013). Auto-tuning and fractional order controller implementation on hardware in the loop system.Journal of Optimization Theory and Applications,156(1), 141-152. Doi:10.1007/s10957-012-0235-y.
Kesavan E., Gowthaman N., Tharani S., Manoharan S., Arunkumar E. (2016).Design and implementation of internal model control and particle swarm optimization based PID for heat exchanger system. International Journal of Heat and Technology, 34(3), 386-390.Doi: 10.18280/ijht.340306.
Podlubny I. (1999). Fractional-order systems and PI/sup/spl lambda//D/sup/spl mu// -controllers.Automatic Control,IEEE Transactions on, 44(1), 208-214.Doi: 10.1109/9.739144.
Valério D, da Costa J S. (2006). Tuning of fractional PID controllers with Ziegler–Nichols-type rules. Signal Processing, 86(10), 2771-2784.Doi:10.1016/j.sigpro.2006.02.020.
Zhou T.J., Wang X., Wang Z.l. (2014). Optimal turning method of fractional PID controller based on sensitivity index. Control Engineering of China,21(6), 1001-1005.
Zhao Z.C., Li M.J, Zhang J.G. (2014). Design of fractional order PID controller based on Bode’s ideal transfer function. Journal of HuazhongUniversity of Science and Technology(Natural Science Edition),42(9), 10-13.Doi:10.13245/j.hust.140903.
Zhang D.l., Tang Y.G., Guan X.P. (2014). Optimum Design of Fractional Order PID Controller for an AVR System Using an Improved Artificial Bee Colony Algorithm. ACTA AUTOMATICA SINICA,05, 973-980.Doi:10.1016/S1874-1029(14)60010-0.
Zwe-Lee Gaing. (2004). A particle swarm optimization approach for optimum design of PID controller in AVR system. Energy Conversion,IEEE Transaction on,19(2), 384~391.Doi:10.1109/tec.2003.821821.
Zamani M., Karimi-Ghartemani M., Sadati N., Parniani M. (2009). Design of a fractional order PID controller for an AVR using particle swarm optimization.Control Engineering Practice,17(12), 1380-1387.Doi:10.1016/j.conengprac.2009.07.005.
Li C., Wang J.C. (2010). Parameters Optimization of Fractional Order PID Controller Based on Improved Differential Evolution. Control Engineering of China, 17(4), 504-508.
Guo W., Han D.D., Xu J.C., Cheng Y. (2014). Fractional order PID predictive functional control parameter tuning based on particle swarm optimization. Control Engineering of China,1(21), 70-73.
Chang L.Y, Chen H.C. (2009). Tuning of fractional PID controllers using adaptive genetic algorithm for active magnetic bearing system. WSEAS Transactions on Systems, 8 (1), 158–167.
XIAO C.X., CAI Z.X., WANG Y.,ZHOU J.Y. (2009). Constrained optimization evolutionary algorithm based on good lattice points principle.Control and Decision,24(2), 249-253+258.Doi:10.13195/j.cd.2009.02.91.xiaochx.019.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela