On Detection Method of Wheat Quality Based on Image Processing and Support Vector Machine

Dexian Zhang

Abstract


This paper studies the detection and grading method of wheat quality based on image processing and Support Vector Machine. By wavelet packet and morphological open-close operation, the author extracts the morphological, color and texture features from whole-grain images of wheat. The results show that the color feature can largely reflect the difference between different grades of wheat; morphological feature can also reflect the difference but not as sharply as the color feature does; texture feature has little to do with wheat grade. Hence, the color feature is taken as the basis for whole-grain grading of wheat. Then, the author establishes a linear parameter classification and recognition model and BP neural network classification model for wheat quality. The overall recognition rate of the former model reaches 95.5%, and that of the latter model reaches 97%. The characteristic parameters of wheat are extracted by CEEMD signal processing method, and subjected to regression analysis by the multiple linear regression model. The correlation coefficient of the regression model is put at r2=0.9511, indicating that it is feasible to detect wheat quality by the collision method.


Full Text:

PDF

References


Cetin A.E., Pearson T.C., Tewfik A.H. (2004). Classification of closed- and open-shell pistachio nuts using voice-recognition technology. Transactions of the Asae, 47(2), 659-664.Doi: 10.13031/2013.16029.

Choudhary R., Paliwal J., Jayas D.S. (2008). Classification of cereal grains using wavelet, morphological, colour, and textural features of non-touching kernel images. Biosystems Engineering, 99(3), 330-337.Doi: 10.1016/j.biosystemseng.2007.11.013.

Courtois F., Faessel M., Bonazzi C. (2010). Assessing breakage and cracks of parboiled rice kernels by image analysis techniques. Food Control, 21(4), 567-572.Doi: 10.1016/j.foodcont.2009.08.006.

Dong Y., Li M.X. (2016). Research of Imaging Interpretation Model of CAT Logging Data. International Journal of Heat and Technology, 34(1), 47-50.Doi: 10.18280/ijht.340107.

Elbatawi I.E. (2008). An acoustic impact method to detect hollow heart of potato tubers. Biosystems Engineering, 100(2), 206–213.Doi: 10.1016/j.biosystemseng.2008.02.009.

Hosainpour A., Komarizade M.H., Mahmoudi A., Shayesteh M.G. (2011). High speed detection of potato and clod using an acoustic based intelligent system. Expert Systems with Applications, 38(10), 12101-12106.Doi: 10.1016/j.eswa.2011.02.164.

Ince N.F., Onaran I., Pearson T.C., Tewfik A.H., Cetin A.E., Kalkan H., et al. (2008). Recognition of damaged wheat kernels and cracked-shell hazelnuts with impact acoustics time-frequency patterns.Transactions of the Asabe, 51(4), 1461-1469.

Kalkan H., Ince N.F., Tewfik A.H., Yardimci Y., Pearson T. (2007). Classification of hazelnut kernels by using impact acoustic time-frequency patterns. EURASIP Journal on Advances in Signal Processing, (1), 1-11.Doi: 10.1155/2008/247643.

Kavdir I., Guyer D.E. (2008). Evaluation of different pattern recognition techniques for apple sorting. Biosystems Engineering, 99(2), 211-219.Doi: 10.1016/j.biosystemseng.2007.09.019.

Khalifa S., Komarizadeh M.H., Tousi B., Nikbakht A.M. (2011). An intelligent system for grading walnuts based on acoustic emission and neural networks. Journal of Food Agriculture & Environment, 9(1), 109-112.

Li Z.D., Guo J.K., Wang Z.J., Miao S.Y. (2016). Research on Combined Forecasting Model for Logistic Material Demand Based on BP Neural Network and Grey System Theory. Revista de la Facultad de Ingeniería, 31(4), 210-220. Doi:10.21311/002.31.4.19.

Luo X., Jayas D.S., Symons S.J. (1999). Comparison of statistical and neural network methods for classifying cereal grains using machine vision. Transactions of the Asae, 42(2), 413-419.Doi: 10.13031/2013.13372.

Manickavasagan A., Sathya G., Jayas D.S. (2008). Comparison of illuminations to identify wheat classes using monochrome images. Computers& Electronics in Agriculture, 63(2), 237-244.Doi: 10.1016/j.compag.2008.03.002.

Paliwal J., Visen N.S., Jayas D.S., Ndg W. (2003). Cereal grain and dockage recognition using machine vision. Biosystems Engineering, 85(1), 51-57.Doi: 10.1016/s1537-5110(03)00034-5.

Pearson T.C., Cetin A.E., Tewfik A.H., Haff R.P. (2007). Feasibility of impact-acoustic emissions for detection of damaged wheat kernels. Digital Signal Processing, 17(3), 617-633.Doi: 10.1016/j.dsp.2005.08.002.

Tran V.T., Yang B.S., Oh M.S., Tan A.C.C. (2009). Fault diagnosis of induction motor based on decision trees and adaptive neuro-fuzzy inference. Expert Systems with Applications An International Journal, 36(2), 1840-1849.Doi: 10.1016/j.eswa.2007.12.010.

Vol N. (1995). Machine vision for color detection of potatoes and apples. Transactions of the Asae, 38(5), 1555-1561.Doi: 10.13031/2013.27982.

Wang N., Zhang N., Dowell F.E., Pearson T. (2005). Determining vitreousness of durum wheat using transmitted and reflected images. Transactions of the Asae, 48(1).Doi: 10.13031/2013.17920.

Wan Y.N., Lin C.M., Chiou J.F. (2002). Rice quality classification using an automatic grain quality detection system. Transactions of the Asae American Society of Agricultural Engineers, 45(2), 379-387.Doi:10.13031/2013.8509.

Xie F., Pearson T., Dowell F.E., Zhang N.Q. (2004). Detecting vitreous wheat kernels using reflectance and transmittance image analysis. Cereal Chemistry, 81(5), 594-597.Doi: 10.1094/cchem.2004.81.5.594.

Zhang G., DSJayas, Jiang D., Zhang Z. (2001). Grain classification with combined texture model. Transactions of the Chinese Society of Agricultural Engineering.


Refbacks

  • There are currently no refbacks.


Revista de la Facultad de Ingeniería,

ISSN: 2443-4477; ISSN-L:0798-4065

Edif. del Decanato de la Facultad de Ingeniería,

3º piso, Ciudad Universitaria,

Apartado 50.361, Caracas 1050-A,

Venezuela.

© Universidad Central de Venezuela