Small-sample MTBF estimation for a CNC machine tool
Abstract
MTBF (Mean Time Between Failures) indicates the life and reliability of machine tools. The research into small-sample MTBF estimation of high grade CNC machine tools has great theoretical and engineering significance. After identifying the prior distribution according to the historical failure data of similar mass-produced machine tools, the authors carry out real-time reliable life prediction of a high-grade machine tool by using the Bayesian method to integrate the prior information and small-sample failure data of the machine tool. The MTBF of the five-axis machining center meets the pattern of 2-parameter Weibull distribution (b=1.9093, a=919.4951). The MTBF point estimate of the machine tool is 815.80(h), and the interval estimate is [576.70(h), 1,232.42(h)]. Applicable to small sampling conditions and giving thorough consideration to field and test information of similar product, the method proposed in this paper provides a good reference to the reliable life prediction and assessment of special machinanical products with only small-sample test data.
Full Text:
PDFReferences
Lei W.T., Hsu Y.Y. (2003). Accuracy enhancement of five-axis CNC machines through real-time error compensation, International journal of machine tools and manufacture,43(9), 871-873.Doi:10.1016/S0890-6955(03)00089-0.
Chen B.J., Chen X.F., Li B., He Z.J., Cao H.R., Cai G.G. (2011). Reliability estimation for cutting tools based on logistic regression model using vibration signals, Mechanical Systems and Signal Processing, 25(7), 2526-2537. Doi:10.1016/j.ymssp.2011.03.001.
SemacheA., Hamidat A., Benchatti A. (2015). Impactstudy of the solar energy on the energyperformances of the ruralhousing in Algeria, International Journal of Heat and Technology, 33(4), 229-236. Doi:10.18280/ijht.330431.
Zhu S.W., Ding G.F., Qin S.F., Lei J., Zhuang L., Yan K.Y. (2012). Integrated geometric error modeling, identification and compensation of CNC machine tools, International journal of machine tools and manufacture, 52(1), 24-29. Doi:10.1016/j.ijmachtools.2011.08.011.
Zhu P.H., Zheng Q.C., Hu Y.H., Wang B., Chao J.Q., Tu H., Sun N., Li J.X. (2016). Experimental research on dynamic characteristics analysis of machine tool based on unit structure, Revista de la Facultad de Ingeniería, 31(4), 70-84. Doi:10.21311/002.31.4.07.
Braglia M., Carmignani G., Frosolini M., Zammori F. (2012). Data classification and MTBF prediction with multivariate analysis approach, Reliability Engineering and System Safety,97(1), 27-35. Doi:10.1016/j.ress.2011.09.010.
He X.C. (2016). Recent development in reliability analysis of NC machine tools, International Journal of Advanced Manufacturing Technology, 85(1), 115-131. Doi:10.1007/s00170-015-7926-0.
Zhang H.B., Jia Z.X.,Hao A.M. (2009). Research on distribution model of WEDM mean time between failures, Mechinery Design and Manufacture, 10(4), 178-180.
Dai Y.,Zhang H.J.,Jia Y.Z. (2007). Point estimation and confidence interval of MTBF of machining center, Journal of Tianjin University of Technology and Education, 17(2), 16-18.
Ming Z.M.,Zhang Y.A.,Tao J.Y., Chen X. (2010). Bayesian reliability assessment and prediction during product development, Journal of Mechanical Engineering, 46(4), 150-155. Doi:10.3901/JME.2010.04.150.
Nan F., Xiao R., Zhang J., Bao Y.W. (2016). Multi-Source Information Decision Model for Internet of Things, Technical Journal of the Faculty of Engineering, 39(8), 281-289. Doi:10.21311/001.39.8.34.
Li D.C., Chen C.C., Chang C.J.,Lin W.K. (2012). A tree-based-trend-diffusion prediction procedure for small sample sets in the early stages of manufacturing systems, Expert Systems with Applications, (39), 1575–1581. Doi:10.1016/j.eswa.2011.08.071.
Yang Z.J., Kan Y.N., Chen F., Xu B.B., Chen C.H.,Yang C.G. (2015). Bayesian Reliability Modeling and Assessment Solution for NC Machine Tools under Small-sample Data, Chinese Journal of Mechanical Engineering, 28(6), 1229-1239. Doi:10.3901/CJME.2015.0707.088.
Li Y.H., Cheng J., Chen B.Z. (2016). Reliability life assessment of EMU axle box spring based on bayes method, Journal of Railway Science and Engineering, 13(6), 1193-1198.
Zhang G.B., Yang X.Y., Li L., Li D.Y. (2015). Reliability assessment of machining center based on mixed Weibull distribution, Application Research of Computers, 32(11), 3278-3282. Doi:10.3969/j.issn.1001-3695.2015.11.017.
Qiu R.H., Ju K.L., Dong Y.G., Qu P.G., Liu H.Z. (2016). Research on Reliability Test Based on Small Sample Motorized Spindle Performance Degradation, China Mechanical Engineering, 27(20), 2738-2748.Doi:10.3969/j.issn.1004-132X.2016.20.008.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela