Generalized Multi-fractal Method for Soft Fault Feature Extraction of Non-linear Analog Circuits Based on EMD
Abstract
The soft fault signal of non-linear analog circuits is non-linear and unstable. Its inherent characteristics cannot be analyzed by the traditional linear method. Therefore, a new method based on the empirical mode decomposition (EMD) and a generalized multi-fractal dimension algorithm is proposed for soft fault signal feature extraction of non-linear analog circuits. The EMD decomposed the circuits soft fault signal into several intrinsic mode functions (IMF). The EMD then modified a traditional G-P correlation dimension algorithm to simply and reliably use it for calculating the generalized multi-fractal dimensions of the fault signals. According to fractal theory, the generalized fractal dimensions of the original fault signals and IMF can be obtained for an appropriate weight factor q. The principle IMF component can then be filtered using the cross-correlation coefficient criterion. The obtained generalized multi-fractal dimension of the principle IMF component was continually input in the supporting vector machine as a characteristic vector to diagnose the soft fault of the non-linear analog circuits. The feasibility and validity of this proposed method were demonstrated by experiments.
Full Text:
PDFReferences
Deng Y., Zhang H. (2015).Diagnosis of soft fault in nonlinear analog circuits based on 2nd-order distribution of Volterra kernel, Kongzhi yu Juece/Control and Decision, 30(7),1340-1344.
Dorostgho A., Dorfeshan M. (2012). Intelligent fault diagnosis via EMD method, Journal of Applied Sciences, 12(18), 1960-1965.
Fan X.M., Xu Y., Li T. (2009). Study on engine monitoring and fault diagnosis based on EMD algorithm, Neiranji Xuebao/Transactions of CSICE (Chinese Society for Internal Combustion Engines), 27(3), 282-287.
Jha M., Nisha B., Rama S., Qureshi M.F. (2014). Artificial intelligence based Fault Diagnosis of Power Transformer-A Probabilistic Neural Network and Interval Type-2 Support Vector Machine Approach,Advances in Modelling and Analysis C, 69(1), 71-89.
Jia Y.F., Ma C., Xie S.G. (2014).A novel nonlinear macromodeling using time piecewise volterra series representation, IEEE Transactions on Electrical and Electronic Engineering, 9(6), 664-669. Doi: 10.1002/tee.22023.
Li M., He Y.G. (2016). A simple structure wavelet transform circuit employing function link neural networks and SI filters, International Journal of Electronics, 103(12), 2052-2063.
Lin H. J., Han J.R., Zhang X.H., Xu J.B., Liu Y.F. (2015). The research on fusion and diagnosis method of multi soft fault of nonlinear analog circuit, International Journal of Future Generation Communication and Networking, 8(11), 191-198. Doi: 10.14257/ijunesst.2015.8.11.19.
Liu G.Q., Gao Y., Liu Y., Xu C. (2016). High-Voltage Circuit-Breaker Fault Diagnosis Based on Mechanical Vibration Signals, REVISTA TECNICA DE LA FACULTAD DE INGENIERIA UNIVERSIDAD DEL ZULIA, 39(4), 387-394.
Mao X.B., Wang L.H., Li C.X. (2008). SVM classifier for analog fault diagnosis using fractal features,Proceedings-2008 2nd International Symposium on Intelligent Information Technology Application, IITA 2008, 2, 553-557. Doi: 10.1109/IITA.2008.249.
Montoya D.E. (2009). REALIZACIÓN DE LOS FILTROS DE PONDERACIÓN DEL FLICKERMETRODE LA NORMA IEC-61000-4-15 MEDIANTE LA TRANSFORMADA WAVELET, Revista de la Facultad de Ingeniería, 24(4), 90-97.
Neelam S., Jha M., Dewangan D.N., Qureshi M.F. (2014). Development of Soft Decision Tree Classifier using Interval Type-2 Fuzzy Logic Rule based Data Mining for Steam Turbine Fault Analysis of a Power System Rotatory Machine Component, Advances in Modelling and Analysis B, 57(2), 1-21.
Tang S.X., Li Z.G., Chen L. (2015). Fault detection in analog and mixed-signal circuits by using Hilbert-Huang transform and coherence analysis, Microelectronics Journal, 46(10), 893-899. Doi: 10.1016/j.mejo.2015.07.004.
Taran A.N., Taran V.N. (2014). Application of Volterra-Wiener spline series for the analysis of nonlinear electric circuits, Journal of Communications Technology and Electronics, 59(7), 758-766. Doi: 10.1134/S1064226914060199.
Widemann C., Stegemann S., John W., Mthis W. (2013). Analytic investigations on the susceptibility of nonlinear analog circuits to substrate noise,Advances in Radio Science, 11, 171-175. Doi: 10.5194/ars-11-171-2013.
Xu Y.X., Zhong J.J., Wen B.C. (2005). Fractal fault diagnosis and classification to modal characteristic of rotor system, Chinese Journal of Mechanical Engineering, 12(41), 186-189. Doi: 10.3901/JME.2005.12.186.
Yao H., Yuan F. (2014). Static Output Feedback Sliding Mode Control for Nonlinear Systems with Delay, Advances in Modelling and Analysis C, 69(1), 28-38.
Zhang H.T., An Q., Hu Z.K., Chen Z.W. (2010). Fault Detection Wavelet Fractal Method of Circuit of Three-Phase Bridge Rectifier,Proceedings-2010 International Conference on Intelligent System Design and Engineering Application, ISDEA 2010, 1, 725-729. Doi: 10.1109/ISDEA.2010.131.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela