Fault diagnosis of power electronic circuits based on wavelet packet decomposition and LibSVM
Abstract
A new fault diagnosis method is proposed in this paper for power electronic circuit. An experimental platform of the three-phase full bridge controlled rectifier is built to test the proposed method. The output DC voltage is selected as the original signal to avoid the misdiagnosis because of load change. The features of the original signal are extracted by using the theory of wavelet packet decomposition. The standard deviation of each frequency component of the 3 layer constitutes the feature vector and then the different types of faults are identified by using LibSVM. Satisfied simulation and experiment results are obtained.
Full Text:
PDFReferences
Cai, T., Duan, S. X., & Kang, Y. (2008). A survey of fault diagnosis technology for power electronics system. Electrical Measurement & Instrumentation, 45(5): 1-7.Doi:10.3969/j.issn.1001-1390.2008.05.001
Czaja, Z., Zaleski, D. (2007). Employing a fuzzy logic based method to the fault diagnosis of analog parts of electronic embedded systems. 2007 IEEE Instrumentation & Measurement Technology Conference IMTC 2007, 1-6, Doi: 10.1109/IMTC.2007.379087
Delpha, C., Chen, H., Diallo, D. (2012). Svm based diagnosis of inverter fed induction machine drive: a new challenge, IECON Proceedings (Industrial Electronics Conference,2012, 3931-3936, Doi: 10.1109/IECON.2012.6389264.
Fu, L., Yang, Q., Wang, G., Ren, H. (2016). Fault diagnosis of power electronic device based on wavelet and neural network. Chinese Control and Decision Conference. IEEE, 2946-2950, Doi: 10.1109/CCDC.2016.7531486.
Fu, L.J., Wang, G.X., Ren, H.X. (2016). Wavelet packet with rbf neural network fault diagnosis of power electronic device. Journal of Shenyang Ligong University, 35(3), 47-51,Doi: 10.3969/j.issn.1003-1251.2016.03.010.
Grzechca, D.E. (2016). Construction of an expert system based on fuzzy logic for diagnosis of analog electronic circuits. International Journal of Electronics and Telecommunications, 61(1), 77-82, Doi: 10.1515/eletel-2015-0010.
Jones, C.B., Stein, J.S., Gonzalez, S., King, B.H. (2015). Photovoltaic system fault detection and diagnostics using Laterally Primed Adaptive Resonance Theory neural network. 2015 IEEE 42nd Photovoltaic Specialist Conference (PVSC), 1-6, Doi: 10.1109/PVSC.2015.7355834.
Kim, D.E., Lee, D.C. (2008). Fault diagnosis of three-phase pwm inverters using wavelet and svm. 2008 IEEE International Symposium on Industrial Electronics, 329-334, Doi: 10.1109/ISIE.2008.4676998
Kodavade, D.V. (2016). Knowledge based approach for fault diagnosis in electronic circuit boards. International Journal of Control & Automation, 9, 293-308, Doi: 10.14257/ijca.2016.9.1.27.
Kumar, A., Singh, A.P. (2016). Transistor level fault diagnosis in digital circuits using artificial neural network. Measurement, 82, 384-390,Doi:10.1016/j.measurement.2015.12.045.
Lee, D.J., Lee, J.P., Ji, P.S., Park, J.W. (2008). Fault diagnosis of power transformer using svm and fcm. Conference Record of IEEE International Symposium on Electrical Insulation 2008,112-115, Doi: 10.1109/ELINSL.2008.4570291.
Ling, M., Yuan,H.W., Wu,Q.C., Tian B., Yuan H.B., Huang C. (2014). Research of a fault tree-based real-time diagnosis and monitoring platform. Proceedings of the 2014 9th IEEE Conference on Industrial Electronics and Applications, ICIEA 2014, 1893-1897, Doi: 10.1109/ICIEA.2014.6931477.
Liu, Y., Wang, T.Z., Tang, T.H., Li, J.F., Chen, J.Q. (2013). Fault diagnosis in multilevel inverter system based on the model of the pca-svm. Power System Protection & Control, 41(3), 66-72, Doi: 10.7667/j.issn.1674-3415.2013.03.012.
Picas, R., Zaragoza, J., Pou, J., Ceballos, S. (2017). Reliable modular multilevel converter fault detection with redundant voltage sensor. IEEE Transactions on Power Electronics, 32(1), 39-51,Doi: 10.1109/TPEL.2016.2526684.
Poon, J., Jain, P., Konstantakopoulos, I., Spanos, C. (2017). Model-based fault detection and identification for switching power converters. IEEE Transactions on Power Electronics, 32(2), 1419 - 1430.Doi: 10.1109/TPEL.2016.2541342
Salimian, H., Iman-Eini, H., Farhangi, S. (2015). Open-circuit fault detection and localization in Modular Multilevel Converter. The 6th Power Electronics, Drive Systems & Technologies Conference (PEDSTC2015), 383-388, Doi: 10.1109/PEDSTC.2015.7093305.
Shao, S., Wheeler, P.W., Clare, J.C., Watson, A.J. (2013). Open-circuit fault detection and isolation for modular multilevel converter based on sliding mode observer. European Conference on Power Electronics and Applications, 28,1-9, Doi: 10.1109/EPE.2013.6634401.
Wang, F., Wang, Y., Huang, X.X., Zhang, Y.K. (2015). Fault Diagnosis of Inverter Power Supply Device Based on SVM. Robotic Welding, Intelligence and Automation. Springer International Publishing, 363, 427-436, Doi:10.1007/978-3-319-18997-0_36.
Wang, T., Qi, J., Xu, H., Wang, Y., Liu, L., Gao, D. (2015). Fault diagnosis method based on fft-rpca-svm for cascaded-multilevel inverter. Isa Transactions, 60, 156-163, Doi: 10.1016/j.isatra.2015.11.018.
Xiong, J., Tian, S., Yang, C. (2016). Fault diagnosis for analog circuits by using eemd, relative entropy, and elm. Computational Intelligence and Neuroscience, 1, 1-9, Doi: 10.1155/2016/7657054.
Yang, X. D., Wang, C. L., & Shi, L. P. (2014). Study of igbt open-circuit fault diagnosis method for h-bridge inverter. Dianji Yu KongzhiXuebao/electric Machines & Control, 18(5), 112-118, Doi:10.3969/j.issn.1007-449X.2014.05.018.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela