Positional Accuracy Analysis of the Polishing Robot Based on Product-of-exponential Formulas

Zhang Xiuheng

Abstract


In order to establish the relationship between error sources and the position errors of the polishing robot end-effector, this work has developed a kinematics model with geometric errors of the polishing robot based on product-of-exponential (POE) formulas. The error spinors can be obtained by determining the geometric relationship of error sources, which result in poor positional accuracy of the robot end-effector. The process of positional accuracy analysis was fully carried out by introducing error spinors into the kinematics model to resolve the two problems. According to the geometric tolerances, error spinors were established describing the geometric errors as one of the components in the actual kinematics model. Then, a significant impact on the end-effector position error is provided by the further positional accuracy analysis process to make a precision reference for the proposed optimization program. The results show that the structural errors and transmission errors are the main factors in the robot static positional accuracy, where the structural errors are systematic errors that can be reduced or compensated for by the precision design, and transmission errors can be resolved by the latter calibrate program.


Full Text:

PDF

References


Bennett D.J., Hollerbach J. (1991). Autonomous calibration of single-loop closed kinematic chains formed by manipulators with passive joint.IEEE Trans. Robotics &Automation, 7(5):597-606. Doi:10.1109/70.97871.

Camacho O., Padilla D., Gouveia J. (2007). Fault diagnosis based on multivariate statistical techniques. Revista Técnica de la Facultad de Ingeniería. Universidad del Zulia, 30(3). Doi: 10.1109/ETFA.2009.5346998.

Chandra M.J.,Rosenshine M., Rosenshine M., Soyster A.L. (1986). Analysis of robot positioning error. International journal of production research, 24(5), 1159-1169. Doi:10.1080/00207548608919794.

Garcés B.E., Mora O.G., Vivas O.A. (2009). Study of industrial robots as assistants in laparoscopic surgeries. Revista Facultad de Ingeniería Universidad de Antioquia, (47), 91-102.

Gong C., Yuan J., Ni J. (2000). Nongeometric error identification and compensation for robotic system by inverse calibration. International Journal of Machine Tools and Manufacture, 40(14): 2119-2137.Doi: 10.1016/S0890-6955(00)00023-7.

Hua Y. (2000). Survey of methods of robot pose error modelling. MACHINE TOOL & HYDRAULICS, 1, 000.

Huang Z. (1987). Error analysis of position and orientation in robot manipulators. Mechanism and machine theory, 22(6), 577-581.Doi:10.1016/0094-114X(87)90053-X.

Imoto J., Takeda Y., Saito H., Ichiryu K. (2009). Optimal kinematic calibration of robots based on maximum positioning-error estimation (Theory and application to a parallel-mechanism pipe bend-effectorer). Computational Kinematics: 133-140. Doi: 10.1007/978-3-642-01947-0_17.

Kim H.S., Choi Y.J. (2000). The kinematic error bound analysis of the Stewart platform. Journal of Robotic Systems, 17(1), 63-73.Doi: 10.1002/(SICI)1097-4563(200001)17:1

Li M.X., Liao R.Q., Li J.L., Luo W., Ke W.Q. (2015). Parameter sensitivity analysis of Gas-lift well unloading processes. International Journal of Heatand Technology, 33(4): 237-245. Doi: 10.18280/ijht.330432.

Mavroidis C., Dubowsky S., Drouet P., Hintersteiner J., Flanz J. (1997). A systematic error analysis of robotic manipulators: application to a high performance medical robot. In Robotics and Automation, 1997. Proceedings, 1997 IEEE International Conference on (Vol. 2, pp. 980-985).

Piancastelli L., Frizziero L., Bombardi T. (2014). Bézier based shape parameterization in high speed mandrel design. International Journal of Heat and Technology, 32(1-2), 57-63.

Potkonjak V. (1982). Dynamics of manipulation robots: Theory and application. Berlin et al.: Springer. Doi: 10.1007/978-3-642-81854-7.

Renato G., Martino M., Antonio S. (2010). Performance calculation for a vertical axis wind turbine with varialble blade pitch. International Journal of Heatand Technology, 28(2): 143-146.

SantolariaJ., GinésM.,VilaL.,BrauA., Aguilar J.J. (2012) Uncertainty evaluation in robot calibration by Monte Carlo method//AIP Conference Proceedings. 1431: 328.er. Doi: 10.1063/1.4707581.

Torrealba R., Clavijo A., Delgado M. (2006). Modelaje matemático y simulación de un robot manipulador de microprocesadores: Dos enfoques. Revista de la Facultad de Ingeniería Universidad Central de Venezuela, 21(3), 121-139.

Wu C.H. (1984). A kinematic CAD tool for the design and control of a robot manipulator. The International Journal of Robotics Research, 3(1), 58-67. Doi: 10.1177/027836498400300105.

Xu W.L. (1989). A perturbation approach to error modeling of robot likage. In Robots, 3(6): 39-44.


Refbacks

  • There are currently no refbacks.


Revista de la Facultad de Ingeniería,

ISSN: 2443-4477; ISSN-L:0798-4065

Edif. del Decanato de la Facultad de Ingeniería,

3º piso, Ciudad Universitaria,

Apartado 50.361, Caracas 1050-A,

Venezuela.

© Universidad Central de Venezuela