Risk analysis of concrete pouring operation during high dam construction
Abstract
Due to the close connection of the high dam concrete pouring operation, the frequent risk evolution path of the personnel, construction machinery and the field environment is complex, which leads to high risk cost and frequent accidents. In order to reduce the operation risk and decrease the frequency of accidents, the risk theory needs to be utilized to analyze the risk of high dam concrete pouring operation. In this paper, we put forward the theory of risk interface framework and a fishbone diagram approach to analyze the factors of this operation. The general idea is that find the risk sources,describe risk interface and put forward the mechanism of high dam concrete pouring accident. Secondly, account forenergy carriers, after that the personnel, machine and environment are abstracted as the energy carriers or thedangerous energy carriers, the risk factors are identified. Then risk analysis is carried out according to the theory of risk interface. Meanwhile classify the risk factors according to fishbone diagramand their respective categories. The final risk analysis shows that thedangerous energy carriers are frequently interacted with each other and the risk factors are complex, and the possibility of accidents is extremely high in high dam concrete pouring operation.
Full Text:
PDFReferences
Adbel M., Julio C.S., Victor H.G. (2013). An analysis of the interaction between hardware and communication protocol on geolocation devices, Revista tecnica de la facultad de ingenieria universidad del zulia, 36(3), 1–9.
Bena, Antonella, Mamo, Carlo, Marinacci, Chiara, Pasqualini, Osvaldo, Tomaino, Antonio, Campo, Giuseppe, Costa, Giuseppe (2006). Risk of repeat accidents by economic activity in Italy, Safety science, 44(4), 297-312, Doi: 10.1016/j.ssci.2005.10.005.
Benner J.L. (1972). Safety, risk and regulation-basic concepts for "safety" risk analysis, The national academies of sciences engineering medicine.
Bird F.E. (1974). Management Guide to Loss Control, Alvarez.
Chen B., Gu C.S., Bao T.F., Wu B.B., Su H.Z. (2016). Failure analysis method of concrete arch dam based on elastic strain energy criterion, Engineering failure analysis, 60, 363-373, Doi: 10.1016/j.engfailanal.2015.11.045.
Cheng L., Liu Y.R. Yang Q. Pan Y.W., Lv Z. (2017). Mechanism and numerical simulation of reservoir slope deformation during impounding of high arch dams based on nonlinear FEM, Computers and geotechnics, 81, 143-154, Doi: 10.1016/j.compgeo.2016.08.009.
Clough R.W. (1999). Recent concrete dams engineering in China, Finite Elements in Analysis and Design, 33(4), 227-231, Doi:10.1016/S0168-874X(99)00046-3.
Farmer E., Chambers E.G. (1929). A study of personal qualities in accident proneness and proficiency, Industrial health research board report medical research council, London, NCID: BA35951498.
Forquin P., Safa K., Gary G. (2010). Influence of free water on the quasi-static and dynamic strength of concrete in confined compression tests, Cement and concrete research, 40(2), 321-333, Doi: 10.1016/j.cemconres.2009.09.024.
Greenwood, Major (1919). The incidence of industrial accidents upon individuals, London, The majesty’s stationery office.
Gu C.S., Qin D., Li Z.C., Zheng X.Q. (2013). Study on semi-parametric statistical model of safety monitoring of cracks in concrete dams, Mathematical problems in engineering, 2013(2), 831-842, Doi: 10.1155/2013/874629.
Haddon W. (1973). Energy damage and the 10 countermeasure strategies, Human factors the journal of the human factors & ergonomics society, 15(4), 355-366, Doi: 10.1136/ip.1.1.40.
Hariri-Ardebili M.A., Saouma V.E. (2016). Seismic fragility analysis of concrete dams: A state-of-the-art review, Engineering structures, 128, 374-399, Doi: 10.1016/j.engstruct.2016.09.034.
Heinrich H.W. (1950). Industrial accident prevention a scientific approach, Industrial & labor relations review, 4(4), 609-609, Doi: 10.2307/2518508.
Helen M. (1960). Contribution of experimental psychology to the formulation of the problem of safety-A brief for basic research. In H.H. Jacobs et al., Behavioural approaches to accident research, Researchgate.
Johnson W.G. (1973). Management oversight and risk tree-mort, Journal of safety research, 4-15, Doi: 10.1002/9780470172230.ch11.
Lenné M.G., Salmon P.M., Liu C.C., Trotter M. (2012). A systems approach to accident causation in mining: an application of the HFACS method, Accident Analysis and prevention, 48(3), 111-117, Doi: 10.1016/j.aap.2011.05.026.
Li X.L., Zhao T.D. (2010). An accident analysis model oriented to complex tasks process, Reliability and maintainability symposium (RAMS), 2010, Proceedings-Annual, 1-6, Doi: 10.1109/RAMS.2010.5447971.
Lin P., Ma T.H., Liang Z.Z., Tang C.A., Wang R.K. (2014). Failure and overall stability analysis on high arch dam based on DFPA code, Engineering failure analysis, 45, 164-184, Doi: 10.1016/j.engfailanal.2014.06.020.
Ma H., Chi F. (2016). Technical progress on researches for the safety of high concrete-faced rockfill dams, Engineering, 2(3), 332-339, Doi: 10.1016/J.ENG.2016.03.010.
Otte D., Jänsch M., Haasper C. (2012). Injury protection and accident causation parameters for vulnerable road users based on german In-depth accident study GIDAS, Accident analysis and prevention, 44(1), 149-153, Doi: 10.1016/j.aap.2010.12.006.
Salvador S., Lluís P.B., Antoni R. (2016). Respuesta deL sistema regional de hospitales en la atención de una emergencia sísmica, Revista de la Facultad de Ingeniería, 31(2), 352-365, Doi: 10.21311/002.31.2.17.
Teizer J., Allread B.S., Fullerton C.E., Hinze J. (2010). Autonomous pro-active real-time construction worker and equipment operator proximity safety alert system, Automation in Construction, 19(5), 630-640, Doi: 10.1016/j.autcon.2010.02.009.
Wang G.H., Wang Y.X., Lu W.B., Zhou W., Zhou C.B. (2015). Integrated duration effects on seismic performance of concrete gravity dams using linear and nonlinear evaluation methods, Soil dynamics and earthquake engineering, 79, 223-236, Doi: 10.1016/j.soildyn.2015.09.020.
Wu H., Tao J., Li X.P., Chi X.W., Li H., Hua X.H., Yang R.H., Wang S., Chen N. (2013). A location based service approach for collision warning systems in concrete dam construction, Safety Science, 51(1), 338-346, Doi: 10.1016/j.ssci.2012.08.006.
Wu S.Y., Cao W., Zheng J. (2016). Analysis of working behavior of Jinping-I Arch Dam during initial impoundment, Water science and engineering. Doi: 10.1016/j.wse.2016.11.001.
Yang G., Gu C.S., Zhao Y.H., Su H.Z., Shi Z.W., Chen J.H. (2016). Research on an abnormality diagnosis method of the structural behavior of spatial crack systems in concrete dams, Optik-international journal for light and electron optics, 127(24), 11758-11774, Doi: 10.1016/j.ijleo.2016.09.070.
Zhang S., Wang G.H., Wang C., Pang B.H., Du C.B. (2014). Numerical simulation of failure modes of concrete gravity dams subjected to underwater explosion, Engineering failure analysis, 36, 49-64, Doi: 10.1016/j.engfailanal.2013.10.001.
He S., Ji A.M., Yang J., Meng M. (2011). Analysis on application of catastrophe model in blowout accident -safety rheology, Natural gas industry, 31(4), 109-112, Doi: 10.3787/j.issn.1000-0976.2011.04.025.
Zhang S.J. (2011). The process of architecture construction safety accident, Journal of harbin institute of technology, 43(2), 88-91, Doi:10.11918/j.issn.0367-6234.2011.02.018.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela