The phreatic level as spectral response modificator of acceleration, velocity and displacement
Abstract
The spectral response of acceleration, velocity and displacement of soil deposits is studied using finite element procedures in a hyperbolic model of plane deformations under undrained conditions. The elastic and dynamic properties of 63 profiles are incorporated in the analyses, selected to be compatible with soils in dry state, with phreatic level to a depth of 2 meters and at half of the profile height. Ten (10) base rock motions having different amplitude and frequency characteristics are considered from near, intermediate and distant sources, for a total of 1890 analysis. It is shown that the frequency contents, magnitude and position of the peak response developed at the surface of a soil deposit is influenced by the combined effect of the soil properties, the characteristics of the base rock motions and the phreatic level position. It is observed that the presence of water affects the spectral response of velocity and displacement significantly, which are related directly with the structural damages. The spectral response according to the epicentral distance and soils types S1, S2, S3 y S4 are analyzed, by means of formats spectral combined of acceleration-displacement, acceleration-velocity and velocity-displacement.
Full Text:
PDFReferences
Bolton M., D. (1986) The strength and dilatancy of sands. Geotechnique Vol. 36 Nº 1, pp.65-78.
Borcherdt R. D. (1994). Estimates on site dependent response spectra for design. Earthquake Spectra 1994, 10, pp. 617-653.
Cosmos. Base de datos sismos digitalizados. Página web: http://db.cosmos.eq.org
COVENIN 1756-2001 (2001). Edificaciones sismorresistentes. MINDUR, FUNVISIS. Caracas Venezuela.
Hardin B. O. and Drnevich (1972). Shear modulus and damping in soils design equations and curves. Journal of the Soil Mechanics and Foundations Division, ASCE. Vol. 98, pp 667-692.
Hilbert H. M., Hughes T. J. y Taylor R. L. (1977). Improved numerical dissipation for time integration algorithms in structural mechanics. Earthquake Engineering and Structural Dynamics, 5(3), pp 283-292.
Janbu J. (1963). Soil compressibility as determined by odometer and triaxial tests. Proc. ECSMFE Wiesbaden, Vol. 1, pp. 19-25.
Kashima T. (2004). View Wave V. 1.39. Programa para generar espectros, compatible con Visual Basic y Visual Fortran.
Konder R. L. (1963). A hyperbolic stress strain formulation for sands. Pan. America ICOSFE Brazil, Vol. 1, pp. 289-324.
Li, X. S., Shen C.K. y Wang Z.L., (1998). Fully coupled inelastic site response analysis for 1986 Lotung earthquake. Journal of the Geotechnical and Geoenvironmental Engineering, ASCE July 1998, Vol. 124, Nº 7
Li X. S., Wang Z. L. y Shen C. K. (1992). SUMDES Users Manual: a nonlinear procedure for response analysis of horizontally layered sites subjected to multi directional earthquake loading. Department of Civil Engineering, University of California, Davis.
Molina González, D. (2005) Influencia de la posición del Nivel freático en la Respuesta Espectral. Tesis de Maestría en Ingeniería Estructural, Universidad de Los Andes, 2005.
Nacional Geophysical Data Center (NGDC). http://www.ngdc.noaa.gov/seg/fliers/
Newmark N. M. (1959). A method of computation for structural dynamics. Journal of the Geotechnical and Geoenvironmental Engineering, ASCE Vol. 85 (3), pp. 67-94.
PLAXIS V 7.2. (2001). Finite element code for soil and rock analyses. Manual dynamics, K.J. Bakker, P.G. Bonnier, P.J. Brand, H.J. Burd, R.J. Termaat. Editorial Balkema. Netherlands.
Rivero, P. y Lobo Quintero, W. (1996). "Formas Espectrales para Suelos con Comportamiento Inelástico". Boletín Técnico del Instituto de Materiales y Modelos Estructurales (IMME), Volumen 34, Número 3, pág. 39-54, Caracas, Venezuela.
Schanz T., Vermeer P. A. y Bonnier P.G. (1999). Formulation and verification of the hardening soil model. In Beyond 2000 in Computational Geotechnics. R.B.J. Brinkgreve (editor), A.A Balkema, Rotterdam, pp. 281-290.
Seed H. B., Wang R. T., Idriss I. M. y Tokimatsu K. (1984). Module and damping factors for dynamics analysis of cohesionless soils. Earthquake Engineering Research Center, University of California, Berkeley, EERC Report 84-14.
Seed H.B., Romo M.P, Sun J. y Lysmer J., (1987). Relationships between soil conditions and earthquake ground motions in México City in the earthquake of Sept. 19, 1985. Earthquake Engineering Research Center, University of California, Berkeley, EERC, Report UCB/EERC-87/15.
Von Soo P. (1980). Properties of soil and rock. In Grundbautaschenbuch, Part 4, Edition 4, Ernst and Sohn, Berlin Germany.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela