Quick evaluation of the maximum drift in buildings without shear walls
Abstract
A methodology is presented to evaluate in quick form the maximum drift in buildings of reinforced concrete conformed by beams and columns, without shear walls, in which each one of the parameters that intervene in the calculation, has been obtained starting from earthquakes registered in Colombia, Ecuador, Peru, Chile and Argentina. It has also been considered the form like it is built in Ecuador, the quality of the steel and the concrete that it is usually used in the constructions for the selection of structures.
Later on the maximum drift of 72 buildings is obtained, from 1 to 6 floors, before the action of 25 seismic registrations, by means of dynamic non lineal analysis and the 1800 results obtained are compared with the values that are found when applying the quick methodology of evaluation.
Full Text:
PDFReferences
Aguiar R., y Bobadilla C., (2005), Curvas de fragilidad para estructuras de H/A de Ecuador menores a siete pisos, Revista CIENCIA. Escuela Politécnica del Ejército, 8 (2), 81-88, Quito, Ecuador.
Aguiar R., y Guerrero P., (2005), Relación entre desplazamiento máximo: inelástico a elástico en la evaluación del drift, Presentado a la Revista de la Sociedad Mexicana de Ingeniería Sísmica, 12 p, México.
Algan B., (1982), Drift and damage considerations in earthquake resistan design of reinforced concrete buildings, Ph.D thesis, University of Illinois, Urbana. Illinois.
American Society of Civil Engineers, (2000), Pre-standard and commentary for the seismic rehabilitation of buildings, FEMA 356, Federal Emergency Management Agency Washington, D.C.
ATC-40, (1996) Seismic evaluation and retrofit of concrete buildings, Applied Technology Council, Redwood City, California.
Bobadilla C., (2006) Curvas de Fragilidad y evaluación rápida de la vulnerabilidad sísmica de estructuras, Tesis de Grado. Escuela Politécnica del Ejército, Quito.
Bertero V., (1995), Tri-service manual methods in VISION 2000, Part 2, Appendix J, Structural Engineers Association of California, Sacramento.
Chopra A., Goel K., (2002), A modal pushover analysis procedure for estimating seismic demands for buildings, Earthquake Engineering and Structural Dynamics, Vol 31, 561-582.
FEMA (1997), NEHRP provisions for the seismic rehabilitation of buildings, Federal Emergency Management Agency. Rep. FEMA 273 (Guidelines) and 274 (Comentary), Washington, D.C.
Ghobarah A. (2004), On drift limits associated with different damage levels, International workshop on performance based seismic
Goel R., and Chopra A., (1997), Period formulas for moment-resisting frame buildings, Journal of Structural Engineering, 123 (11), 1454-1461.
Guerrero P., (2005), Determinación rápida de la deriva de piso. Análisis de la relación entre el desplazamiento inelástico máximo esperado con el desplazamiento calculado para la respuesta elástica lineal en sistemas de 1 gdl, Tesis de Grado. Facultad de Ingeniería Civil. Escuela Politécnica del Ejército, Quito.
Lee L., Hang S., and Oh Y., (1999), Determination of ductility factor considering different hysteretic models, Earthquake Engineering and Structural Dynamics, 28, 957-977.
Math Grapher (2006), Internet: www.mathgrapher.com/Download/Trial
Miranda E., (1997), Estimation of maximum interstory drift demands in displacement-based design Seismic design methodologies for the next generation of codes, Krawinkler H., and Fajfar P., editor, Balkema.
Miranda E., (1999), Approximate seismic lateral deformation demands in multistory buildings, Journal of Structural Engineering, 125 (4), 417-425.
Miranda E., (2000), Inelastic displacement ratios for structures on firm sites, Journal of Structural Engineering, 126 (10), 1150-1159.
Miranda E., Reyes C., (2002), Aproximate lateral drift demands in multistory buildings with nonuniform stiffness, Journal of Structural Engineering, 128 (7), 840-849.
Nassar A., and Krawinkler H., (1991), Seismic demands for SDOF and MDOF systems, John Blume Earthquake Engineering. Ctr. Dept. of Civil Engineering, Rep. 95, Stanford University, Stanford, California.
Ordaz M., Montoya C., (2001), DEGTRA A4, Instituto de Ingeniería. Universidad Nacional Autónoma de México, México.
Reinhorn A., (1997), Inelastic analysis techniques in seismic evaluations, in P. Fajfar and K. Krawinkler (eds), Seismic design methodologies for the next generation of codes, 277-287, Balkema Rotterdam.
SEAOC (1995), Vision 2000 Report on performance based seismic engineering of buildings, Structural Engineers Association of California, Volume I, Sacramento.
Shimazaki K., and Sozen M., (1984), Seismic drift of reinforced concrete structures Res. Rep., Hazama-Gumi Ltd., Tokyo, Japan (in Japanese); and draft report (in English).
UBC (1997), Uniform Building Code, International Conference of Building Officials, ICBO, 3 Vol, Whittier, CA, USA.
Valles R., Reinhorn A., Kunnath S., Li C., and Madan A., (1996), IDARC2D Version 4.0: A computer program for the inelastic damage analysis of buildings, National Center for Earthquake Engineering Research. Headquartered at the State University of New York at Buffalo, Technical Report NCEER-96-0010, 189 p. New York.
Whittaker A., Constantinou M., and Tsopelas P., (1998), Displacement estimates for Performance-Based Seismic Design, Journal of Structural Engineering, 124 (8), 905-912.
Refbacks
- There are currently no refbacks.

Revista de la Facultad de Ingeniería,
ISSN: 2443-4477; ISSN-L:0798-4065
Edif. del Decanato de la Facultad de Ingeniería,
3º piso, Ciudad Universitaria,
Apartado 50.361, Caracas 1050-A,
Venezuela.
© Universidad Central de Venezuela